@article { author = {Beheshti Nia, Mohammad Ali and Moghimi, Mostafa}, title = {Injured transportation quality enhancement during natural disaster from the various geographical zones}, journal = {Human Geography Research}, volume = {49}, number = {3}, pages = {539-551}, year = {2017}, publisher = {University of Tehran}, issn = {2008-6296}, eissn = {2423-7736}, doi = {10.22059/jhgr.2016.56489}, abstract = {- Introduction A hazard is a situation that poses a level of threat to life, health, property, or environment. Most hazards are dormant or potential, with only a theoretical risk of harm; however, once a hazard becomes "active", it can create an emergency. Preventing harmful results of natural disasters such as flood, earthquake, tsunami, storm and etc requires crisis management planning. One of the most important parts of fatality during this events is caused by weakness in transportation system, especially in injured transfer system to vital treatment. This paper proposes an injured transportation system which is one of the most important subjects in decreasing human fatality during crisis. In this system at first, casualties must be taken to a primary medical center by road relay vehicles (like ambulances, or personal vehicles), then be transferred to master medical centers by air relay vehicles (like helicopters) considering required treatment. On the other hand, due to the high price and limitation of air transportation, it is supposed that casualties will be transferred using integrated mode to the master medical centers. The most important reason of using air transportation is that when the natural disasters happen, roads are usually blocked as result of damages caused by crisis effects. Consequently, we have heavy traffic or blocking on the streets, highways and roads. Additionally, in proposed system every primary medical center can use common vehicles instead of independent transportation to move injures.Importance of this subject is that it is possible to transfer wounded who are located in the same geographic area by using integrated transportation due to high damaging probability in foundations and usual paths when natural evens occur. Fast integrated transportation is considered in second stage. Finally, we compare our proposed transportation system with two other systems in which the first system uses direct transportation of injuries to the master medical centers and the second one uses two-stage transportation system by road vehicles. The aim is determining the assignment of injures to the air relay vehicles and determining the priority of injures for transferring to the master medical centers. The objective is minimizing the total waiting time of injures to receive to the master medical centers.- Methodology This research is applicable and is done with analytical approach. To find the best parameters for alternatives of problems that are solved in this paper, we considered to 8 crisis engagement specialists and emergency section of master hospitals. Then to maximum coverage of problem ranges, 216 random problems are produced to consider several condition of problems in crisis. A genetic algorithm with variable chromosomes structure is proposed to solve and optimize these problems. In the field of artificial intelligence, a genetic algorithm (GA) is a search heuristic that mimics the process of natural selection. This heuristic (also sometimes called a met heuristic) is routinely used to generate useful solutions to optimization and search problems. Genetic algorithms belong to the larger class of evolutionary algorithms (EA), which generate solutions to optimization problems using techniques inspired by natural evolution, such as inheritance, mutation, selection, and crossover. After codding the proposed algorithm, this problem is ran on several random problems. Structure of this random problems includes the various range of problems. All of the computational programs are written on Matlab R2013a and ran by a computer with Intel, corei5, 2.6GHz Processor. After several runs and by experimenting, we understand that amounts 100 for populations, 0.05 for mutation rate, 0.5 for best parameter, and 50 for termination parameter, result to the best answers in a reasonable solving-time. - Result and discussionThree scenarios have been proposed to survey in this problem, including: direct transfer of injuries to the master medical centers, integrated two-stage transfer by road vehicles and integrated two-stage transfer by a combination of road vehicles (in the first stage) and air vehicles (in the second stage),. All three scenarios are compared with each other. For this, 216 random test problems with different structures to have maximum coverage of crisis conditions is created and they have been solved by proposed genetic algorithm. Considering destruction of urban infrastructures when a disaster occurs, we considered a fast-air-transportation in part 2 of transportation system to deliver injures to master hospitals. Results is shown that the third scenario is the best injured transportation system scenario to minimize waiting injured time arriving to the master hospital (considering her sore). The numerical results represents this matter that using the system that is proposed in this paper have the less amount of waiting times comparison to 2 other scenarios that studied. - ConclusionOne of the most effective issues on number of fatality resulted by natural disasters, is transportation systems to convey wounded to medical centers. In this essay we tried to survey ways of reducing waiting time of casualties to master medical centers using integrated transportation system and two-stage transfer. After problem representation a genetic algorithm to solve this problem is proposed. To survey results, we created several random problems in special structure that they show various range of problems. Then these random problems were solved by proposed algorithm. According to obtained numerical results, the proposed system have considerable effects on reduction of injures waiting time to master medical centers. Hence, it propose that stables a central data receiver-distributer organization to receive injures data from primary medical centers and transportation system condition, combine and solve them in proposed model and give transportation missions to system to minimize injures waiting time and saving more lives.At the end, usage of integrated air transportation system may impose more expenses to system, but it has advantages like less injures waiting time to arrive to master medical centers, more reliability, less number of round trip, less number of vehicle and…, that can justify this expensiveness.}, keywords = {natural disaster,urban infrastructure,Cumulative transportation,Two stage transferring system,Genetic Algorithm}, title_fa = {بهبود کیفیت انتقال مصدومان هنگام وقوع بلایای طبیعی از نقاط مختلف جغرافیایی}, abstract_fa = {جلوگیری از تبدیل بلایای طبیعی به فجایع طبیعی مستلزم افزایش توان مدیریتی و برنامه‌ریزی‌های مدیریت بحران است. به‌این‌منظور، سیستم حمل‌ونقل مصدومان ‌هنگام تخریب زیرساخت‌های شهری نقش غیرقابل‌انکاری ایفا می‌کند؛ بنابراین، وجود یک سیستم حمل‌ونقل اضطراری مبتنی‌بر علوم مهندسی و کاربردی در چنین شرایطی ضروری به نظر می‌رسد. در این پژوهش، سیستم حمل‌ونقل مصدومان به مراکز درمانی با رویکرد انتقال دومرحله‌ای و حمل‌ونقل اشتراکی معرفی شده است. در این رویکرد، مصدومان در مرحلة اول به‌طور مستقیم به مراکز امدادی واسط و در مرحلة دوم به‌صورت اشتراکی و با استفاده از امداد هوایی به مراکز درمانی اصلی منتقل می‌شوند. هدف تعیین نحوة تخصیص مصدومان به وسایل نقلیة امدادی، تعیین اولویت حمل آن‌ها و مسیریابی وسایل نقلیة امدادی به نحوی است که زمان انتظار مصدومان به‌منظور رسیدن به مراکز درمانی اصلی کمینه شود. پیچیدگی این مسئله از نوع NP-hard است، درنتیجه حل بهینة آن در زمان معقول با استفاده از روش‌های دقیق ممکن نیست. به همین منظور، از الگوریتم ژنتیک برای حل مسائل استفاده و سپس نتایج در سه سناریوی مختلف تحلیل شده است. سناریوی اول انتقال مستقیم مصدومان به مراکز درمانی اصلی، سناریوی دوم انتقال مستقیم مصدومان به مراکز امدادی واسط و حمل زمینی و غیراشتراکی آن‌ها به سوی مراکز درمانی اصلی و سناریوی سوم رویکرد پیشنهادی پژوهش است. به‌منظور بررسی عملکرد هریک از سناریوها، 216 مسئله برای پوشش طیف متنوعی از شرایط اضطرار درنظر گرفته شده‌اند. نتایج نشان می‌دهد سناریوی سوم تأخیر کمتری در رسیدن مصدومان به مراکز درمانی اصلی در پی دارد که به‌طور مستقیم موجب بهبود کیفیت در انتقال مصدومان می‌شود.}, keywords_fa = {الگوریتم ژنتیک,انتقال دومرحله‌ای,بلایای طبیعی,حمل‌ونقل اشتراکی,زیرساخت شهری}, url = {https://jhgr.ut.ac.ir/article_56489.html}, eprint = {https://jhgr.ut.ac.ir/article_56489_71cd89225fc89d56044f16aca269e4c7.pdf} }