Land Use Change Monitoring Using Landsat Satellite Image Data (Case study: Khan Mirza Plain)

Document Type : Research Paper

Authors

1 student

2 Dept. of Geographical Sciences and Planning, University of Isfahan, Hezarjerib St., Isfahan.

3 Agricultural and Natural Resources Research Center

Abstract

Accurate and real time information on land use and land cover and their changes is very important in urban management decisions, ecosystem monitoring and urban planning. In recent decades, widespread changes in land use of the Khan mirza plain as one of the northern Karun watersheds have occurred, that need to monitoring these changes.
In this study, Landsat 5, 7 and 8 satellite images and TM, ETM, and OLI sensors for the period of 1996, 2006, and 2016 were used to produce of land use and land cover map of Khan mirza plain by four methods: maximum likelihood, artificial neural network, minimum distance and Mahalanobis distance and theirs Kappa coefficient were evaluated.
The results of the evaluation of the accuracy of these two methods by using Kappa coefficients have shown that the artificial neural network algorithm is more accurate than the maximum likelihood algorithm. Also, by results of two algorithms of artificial neural network and maximum likelihood with an overall accuracy of 90.29 and 86.79, all of land cover maps were classified in six classes (agriculture, rangeland, residential area, rocky and bare lands, gardens and flatlands).
The analysis of the classifications showed that agricultural and residential classes had a rising trend, 62.5% and 3.5%, respectively, and rangeland, rocky and bare lands and flatlands were decreased.
The largest change is related to the conversion of rocky and bare lands class to the agricultural class, which 1673 hectares of rocky and bare lands in 2006 changes into agricultural lands in 2016. Another obvious land use change in this area, are change of rangelands into residential areas, which 40.8 ha of rangelands changed into residential area.
In overall, this research showed that the best way to produce of land use map in the study area is to use artificial neural network algorithm. According to the results, it is suggested using this method to produce of land use change map for this region.
Accurate and real time information on land use and land cover and their changes is very important in urban management decisions, ecosystem monitoring and urban planning. In recent decades, widespread changes in land use of the Khan mirza plain as one of the northern Karun watersheds have occurred, that need to monitoring these changes.
In this study, Landsat 5, 7 and 8 satellite images and TM, ETM, and OLI sensors for the period of 1996, 2006, and 2016 were used to produce of land use and land cover map of Khan mirza plain by four methods: maximum likelihood, artificial neural network, minimum distance and Mahalanobis distance and theirs Kappa coefficient were evaluated.
The results of the evaluation of the accuracy of these two methods by using Kappa coefficients have shown that the artificial neural network algorithm is more accurate than the maximum likelihood algorithm. Also, by results of two algorithms of artificial neural network and maximum likelihood with an overall accuracy of 90.29 and 86.79, all of land cover maps were classified in six classes (agriculture, rangeland, residential area, rocky and bare lands, gardens and flatlands).
The analysis of the classifications showed that agricultural and residential classes had a rising trend, 62.5% and 3.5%, respectively, and rangeland, rocky and bare lands and flatlands were decreased.
The largest change is related to the conversion of rocky and bare lands class to the agricultural class, which 1673 hectares of rocky and bare lands in 2006 changes into agricultural lands in 2016. Another obvious land use change in this area, are change of rangelands into residential areas, which 40.8 ha of rangelands changed into residential area.
In overall, this research showed that the best way to produce of land use map in the study area is to use artificial neural network algorithm. According to the results, it is suggested using this method to produce of land use change map for this region.
Accurate and real time information on land use and land cover and their changes is very important in urban management decisions, ecosystem monitoring and urban planning. In recent decades, widespread changes in land use of the Khan mirza plain as one of the northern Karun watersheds have occurred, that need to monitoring these changes.
In this study, Landsat 5, 7 and 8 satellite images and TM, ETM, and OLI sensors for the period of 1996, 2006, and 2016 were used to produce of land use and land cover map of Khan mirza plain by four methods: maximum likelihood, artificial neural network, minimum distance and Mahalanobis distance and theirs Kappa coefficient were evaluated.
The results of the evaluation of the accuracy of these two methods by using Kappa coefficients have shown that the artificial neural network algorithm is more accurate than the maximum likelihood algorithm. Also, by results of two algorithms of artificial neural network and maximum likelihood with an overall accuracy of 90.29 and 86.79, all of land cover maps were classified in six classes (agriculture, rangeland, residential area, rocky and bare lands, gardens and flatlands).
The analysis of the classifications showed that agricultural and residential classes had a rising trend, 62.5% and 3.5%, respectively, and rangeland, rocky and bare lands and flatlands were decreased.
The largest change is related to the conversion of rocky and bare lands class to the agricultural class, which 1673 hectares of rocky and bare lands in 2006 changes into agricultural lands in 2016. Another obvious land use change in this area, are change of rangelands into residential areas, which 40.8 ha of rangelands changed into residential area.
In overall, this research showed that the best way to produce of land use map in the study area is to use artificial neural network algorithm. According to the results, it is suggested using this method to produce of land use change map for this region.

Keywords

Main Subjects


  1. آرخی، صالح؛ نیازی، یعقوب و ابراهیمی، حیدر، ۱۳۹۲، مقایسة کارایی الگوریتم‏های طبقه‏بندی شبکة عصبی مصنوعی و درختی در تهیة لایة کاربری اراضی با کمک داده‏های ETM+ (مطالعة موردی: حوضة دره‏شهر استان ایلام)، فضای جغرافیایی، دورة ۱۳، ش ۴۴.
  2. سفیانیان، علیرضا؛ محمدی ،توفیق الهه؛ خداکرمی، لقمان؛ امیری فاضل، 1390. تهیه نقشه کاربری اراضی با استفاده از روش شبکه عصبی مصنوعی (مطالعه موردی: حوزه آبخیز کبودرآهنگ، رزن و خونجین - تلخاب در استان همدان)، مجله کاربرد سنجش از دور و GISدر علوم منابع طبیعی، دوره 2، شماره 1.
  3. رسولی، علی‏اکبر؛ زرین‏بال، محمد و شفیعی، محمد، 1388، کاربرد تصاویر ماهواره‏ای با هدف تشخیص تغییرات کاربری اراضی و ارزیابی تأثیرات محیط زیستی، پژوهش‏های آبخیزداری (پژوهش و سازندگی)، دورة 22، ش 2، صص 2- 9.
  4. علوی‏پناه، سیدکاظم؛ احسانی، امیر هوشنگ؛ متین‏فر، حمیدرضا؛ رفیعی امام، عمار و امیری، رضا، 1387، مقایسة محتوای اطلاعاتی سنجنده‏های TM و ETM +در محیط‏های بیابانی و شهری ایران، پژوهش‏های جغرافیا، س 47، صص 64-56.
  5. علوی‏پناه، سیدکاظم، 1391، کاربرد سنجش‏ازدور در علوم زمین، تهران: انتشارات دانشگاه تهران.
  6. فاطمی، سید باقر و رضایی، یوسف، 1391، مبانی سنجش‏ازدور، انتشارات آزاده.
  7. فیضی‏زاده، بختیار؛ عزیزی، ح. و ولی‏زاده، خ.، 1386، استخراج کاربری‏های اراضی شهرستان ملکان با استفاده از تصاویر ماهواره‏ای ETM+، مجلة آمایش، ش 2، صص ۷۴-93.
  8. فیضی زاده، بختیار ؛ میررحیمی، سیدمحمود حاجی. ۱۳۸۷، آشکارسازی تغییرات کاربری اراضی با استفاده از روش طبقه بندی شیء گرا (مطالعه موردی: شهرک اندیشه)، همایش ژئوماتیک 87، تهران، سازمان نقشه برداری کشور.
  9. قرائتی جهرمی، مجتبی؛ ولی، عباسعلی؛ موسوی، سید حجت؛ پناهی، فاطمه و خسروی، حسن، 1393، پایش تغییرات کاربری اراضی دشت کاشان با استفاده از داده‏های دورسنجی، مجلة بین‏المللی علمی‏- تحقیقاتی زمین پویا، ج 4، ش 2، صص 129.
  10. قیومی محمدی، حمیدرضا و مؤمنی، عزیز، 1380، بررسی تغییر کاربری اراضی مستعد کشاورزی در واحد هیدرولوژیک برخوار- اصفهان، کنفرانس به‏سازی زمین، دورة 14، ش 1.
  11. لطیفی، هومن؛ اولادی، جعفر؛ سارویی، سعید و جلیلوند، حمید، 1386، ارزیابی قابلیت داده‏های ماهواره‏ای ETM+ جهت تهیة نقشة طبقات پوشش جنگل، اراضی درختچه و مرتع، مطالعة موردی حوزة نکا، ظالم‏رود، مجلة علوم و فنون کشاورزی و منابع طبیعی، س ۱۱، ش ۴۰، صص 439-۴۴۴.
    1. Alkaradaghi, K.; Ali, S. S.; Al-Ansari, N. and Laue, J., 2018, Evaluation of Land Use & Land Cover Change Using Multi-Temporal Landsat Imagery: A Case Study Sulaimaniyah Governorate, Iraq. Journal of Geographic Information System, Vol. 10, No. 6, PP. 247-260.
    2. Alvi Panah, S. K., 2012, Application in Earth Sciences, Tehran: Tehran University Press.
    3. Alvipanah, S. K.; Ehsani, A. H.; Matinfar, H. R.; Rafei Emam, A. and Amiri, R., 2008, Comparison of Information Content of TM and ETM + Sensors in Iran's Desert and Urban Environment, Geography Studies, Vol. 47, PP. 56-64.
    4. Arkhi, S.; Niazi, Y. and Ebrahimi, H., 2014, Comparison of the Efficiency of Artificial Neural Network and Tree Classification Algorithms in Building the Land Use Layer Using etm Data(case of study: Darehshahr in Ilam province), Geographic space, Vol. 13, No. 44.
    5. Atkinson, P. M. and Tatnall, A. R. L., 1997, Neural networks in remote sensing, International Journal of Remote Sensing, Vol. 18, No. 4, PP. 699-709.
    6. Boru Ayana, A. and Kositsakulchai, E., 2012, Land Use Change Analysis Using Remote Sensing and Markov Modeling in Fincha Watershed, Ethiopia, Kasetsart Journal: Natural Science, 046, 135-149.
    7. Brian, W. Szuster. Qi Chen, and Michael, Borger., 2011, A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones, Applied Geography, Vol. 31, PP. 525-532.
    8. Campbell, J.B., 2002, Introduction to remote sensing, Third edition, USA, New York: The Guilford Press, 621p.
    9. Fatemi, S. B. and Rezai, Y., 2012, Fundamentals of remot sensing, Azadeh Publications.
    10. Fezizadeh, B.; Azizi, H. and Valizadeh, KH., 2007, Extraction of land use in Malekan County using etm satellite imagery, Amayesh Journal, No. 2, PP. 74-93.
    11. Ghaiumi Mohammadi, H. R.; Zarrabi, A. and Momeni, A., 2005, The effects of adhoc development works on natural resources and agricultural lands of Isfahan, Proceedings of International Conference on Human Impacts on Soil Quality Attributes Sep. 12-16, 2005, Isfahan, I. R. Iran.
    12. Ghayoumi Mohammadi, H. R. and Momeni, A., 2001, Investigation of Land Use Change in Agricultural Potential Land in Hydrologic Unit of Borkhar-Isfahan, Conference on Land Reclamation, Vol. 14, No. 1.
    13. Gheraati jahromi, M.; Vali, A., Mousavi, S. H.; Panahi, F. and Khosravi, H. (2014). Monitoring of land use change in Kashan Plain using remote sensing data, Zamin pouya International journal, Vol. 4, N. 2, PP.129.
    14. Hadjimitsis, D. G.; Papadavid, G.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, M.G.; Retalis, A.; Michaelides, S.; Chrysoulakis, N.; Toulios, L. and Clayton, C.R.I., 2010, Atmospheric correction for satellite remotely, PP. 112-121.
    15. Han, J.; Hayashi, Y.; Cao, X. and Imura, H., 2009, Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai, China Landscape and Urban Planning, www.elsevier.com, P. 133.
    16. Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D. and Rodes, I., 2017, Operational high resolution land cover map production at the country scale using satellite image time series, Remote Sensing, Vol. 9, No. 1, PP. 95.
    17. Islam, Kamrul.; Jashimuddin, Mohammed.; Nath, Biswajit.; and Nath, Tapan. Kumar, 2018, Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh, The Egyptian Journal of Remote Sensing and Space Science, Vol. 21, No. 1, PP. 37-47.
    18. Habtamu, Teka., Madakadze, I.C., Joel Botai, Ondego., Hassen, Abubeker. 2018. Evaluation of land use land cover changes using remote sensing Landsat images and pastoralists perceptions on range cover changes in Borana rangelands, Southern Ethiopia. International Journal of Biodiversity and Conservation. Vol. 10(1), pp. 1-11.
    19. Langford, M.; Maguire, D. J. and Unwin, D. J., 2008, The areal interpolation problem: estimating population using remote sensing in a GIS framework. In: L. Masser and M. Blakemore, eds. Handing geographical information: methodology and potential applications, New York: Longman Scientific & Technical/John Wiley & Sons, 55–77.
    20. Latifi, H.; Oladi, J.; Saroei, S. and Jalilvand, H., 2007, Estimation of ETM + satellite data capability for mapping of forest cover classes, shrubland and pasture lands, A case study of the Neka area is rude, Journal of Agricultural Sciences and Technology, No. 4, PP. 439.
    21. Lu, D. and Weng, Q., 2007, A survey of image classification methods and techniques for improving classif ication performance, International Journal of Remote Sensing, Vol. 28, No. 5, PP. 823.
    22. Mather, P.M., 2005, Computer processing of remotely-sensed images, Third Edition, John Wiley and Sons, Ltd, 319p.
    23. Pal, M. and Mather, P. M., 2005, Support vector machines for classification in remote sensing, International Journal of Remote Sensing, Vol. 26, No. 5, PP. 1007-1011.
    24. Prakasam, C., 2010, Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal taluk, Tamil nadu, International Journal of  Geomatics  and Geosciences, Vol. 1, No. 2.
    25. Ramachandran, R. M.; Roy, P. S.; Chakravarthi, V.; Sanjay, J. and Joshi, P. K., 2018, Long-term land use and land cover changes (1920–2015) in Eastern Ghats, India: Pattern of dynamics and challenges in plant species conservation, Ecological Indicators, Vol. 85, PP. 21-36.
    26. Rasouli, A.; Zarinbal, M. and Shafei, M., 2009, Application of Satellite Images to Identify Land Use Change and Environmental Impact Assessment, Watershed Research, No. 2, PP. 2-9.
    27. Rawat, J. S. and Kumar, M., 2015, Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India, The Egyptian Journal of Remote Sensing and Space Science, Vol. 18, No. 1, PP. 77-84
    28. Rodríguez-Echeverry, J.; Echeverría, C.; Oyarzún, C. and Morales, L., 2018, Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests, Landscape Ecology, Vol. 33, No. 3, PP. 439-453.
    29. Teka, H.; Madakadze, C. I.; Botai, J. O.; Hassen, A.; Angassa, A. and Mesfin, Y., 2018, Evaluation of land use land cover changes using remote sensing Landsat images and pastoralists perceptions on range cover changes in Borana rangelands, Southern Ethiopia, International Journal of Biodiversity and Conservation, Vol. 10, No. 1, PP. 1-11.
    30. Tso, B. and Mather, P.M., 2001, Classifiation Methods for Remotely Sensed Data, USA: Taylor & Francis.
    31. Tso, B. and Mather, P.M., 2009, Classification Methods for Remotely Sensed Data, Chapter 2-3. 2 nd ed., America: Taylor and Francis Pub.
    32. Wardlow, D. B.; Eghbert and, L. E. and Castens, J. H., 2007, Analysis of time-series MODIS 250mvegetation index data for crop classification in the U.S. Central Great plains, Journal of Remote Sensing of Environment, Vol. 108, PP. 290-310.