Document Type : Research Paper
Authors
1 Shahid Chamran University of Ahvaz
2 Assistant Professor
3 Associ profe
Abstract
Keywords
Main Subjects
10. Gallo, K.P., 1993, The use of a vegetation index for assessment of the urban heat islandeffect, International Journal of Remote Sensing, Vol.14, No. 11, PP. 2223-2230.
11. Geist, H. and Lambin, E.F., 2001, What drives tropical deforestation? LUCC Report Series No.4, LUCC International Project office, University of Louvain.
12. Gingrich, S.E. and Diamond, M.L., 2001, Atmospherically derived organic surface films along an urban–rural gradient. Environ. Sci. Tech. Vol. 35, PP.4031-4037.
13. Goward, S.N.; Cruickshanks, G.D. and Hope, A.S., 1985, Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape, Remote Sensing of Environment, Vol. 18, PP.137-146.
14. Guhathakurta, S. and Gober, P., 2007, The impact of the Phoenix urban heat island on residential water use. Journal of the American Planning Association, Vol.73, No. 3, PP. 317-329.
15. Hahs, A. K. and Mcdonnell, M.J., 2006, Selecting independent measures to quantify Melbourne’s urban– rural gradient. Landscape Urban Plan. Vol. 78, No. 4, PP. 435-448.
16. Harrington, L. P., 1977, The role of urban forests in reducing urban energy consumption, editedby Proceedings of the Society of American Foresters, pp 60-66.
17. Hashemi, M.; Alavi panah, K. and Dinarvandi, M., 2013, Evaluation of spatial distribution of surface temperature in urban environment Application of Thermal Detection, Journal of Environmental Studies, Vol. 39, No. 1, PP. 81-99 (in Persian).
18. Huang, Y. J., 1987, The potential of vegetation in reducing summer cooling loads inresidential buildings, Journal of Climate and Applied Meteorology, Vol. 26, PP. 1103-1116.
19. Khalil Valizadeh, K.; Gholamnia, Kh.; Einali, G. and Mosavi, S.M., 2017, Estimation of ground temperature and thermal islands extraction using a separate window algorithm and multivariate regression analysis (case study of Zanjan city), Journal Urban research and planning, V. 8, NO. 30, pp: 35-50 (in Persian).
20. Khan, S.M. and Simpson, R.W., 2001, Effect of a heat island on the meteorology of a complex urban airshed, Boundary-Layer Meteorology, Vol. 100, No. 3, PP. 487-506.
21. Khandelwal, S.; Goyal, R.; Kaul, N. and Mathew, A., 2017, Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Science.
22. Lambin, E. F., 2000, Land cover assessment and monitoring, in WILEY, J.: Encyclopedia of Analytical Chemistry.
23. Landsberg, H. E., 1981, The Urban Climate; Academic Press: New York, NY, USA, PP. 84-89.
24. Liu, L. and Zhang, Y., 2011, Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong. Journal Remote Sens Vol. 3, PP. 1535-1552.
25. Lu, Y.; Feng, P.; Shen, C. and Sun, J., 2009, Urban Heat Island in Summer of Nanjing Based on TM Data. In Proceedings of 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May , PP. 1-5.
26. Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, M.; Sawut, M. and Caetano, M., 2014, Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 89, PP. 59-66.
27. Malekpour, P., Taleai, M., Rezaee, Y. and Khoshgoftar, M., 2010, Survey of Ground Surface Temperature and its Relationship with Classes of Usable Land Coverage Using Sensor Data ETM+ (Case study: Tehran), Geomatics National Conference (in Persian).
28. Mcdonnell, M. J. and Pickett, S.T.A., 1990, Ecosystem structure and function along urban–rural gradients: an unexploited opportunity for ecology. Ecology, Vol. 71, PP. 1232-1237.
29. Mcdonnell, M. J., 1997, Ecosystem processes along an urban-to-rural gradient. Urban Ecosys. Vol.1, PP. 21-36.
30. Mcintyre, N. E., 2001, Ground arthropod community structure in a heterogeneous urban environment. Landsc. Urban Plann, PP. 52-57.
31. Oke, T. R., 1982, The energetic basis of the urban heat island, Quarterly Journal of the Royal Meteorological Society, Vol.108, PP. 1-24.
32. Pouyat, R.V.; Mcdonnell, M. J. and Pickett, S.T.A., 1995, Soil characteristics in oak stands along an urban– rural land-use gradient. J. Environ. Qual. Vol. 24, PP. 516-526.
33. Roth, M.; Oke, T. R., and Emery, W. J., 1989, Satellite derived urban heat islands from three coastal cities and the utilization of such data in urban climatology, International Journal of Remote Sensing.
34. Rouse, J. W.; Haas, R. H.; Schell, J. A. and Deering, D.W, 1973, Monitoring vegetation systems in the great plains with ERTS, Third ERTS Symposium, NASA SP-351 I, PP. 309-317.
35. Senanayake, I. P.; Welivitiya, W.P. and Nadeeka, P.M., 2013, Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Journal Urban Climate, PP. 19-35.
36. Shakiba, A.; Zieaian Firouzabadi, P.; Ashorlo, D. and Namdari, S., 2010 Analysis of the relationship between land use and land cover and thermal islands in Tehran, Iranian Remote Sensing&GIS, Vol. 1, No. 1, PP. 39-56 (in Persian).
37. Sobrino, J. A.; Caselles, V. and Becker, F., 1990, Significance of the Remotely Sensed Thermal Infrared Measurements Obtained Over a Citrus Orchard, ISPRS.
38. Sobrino, J.A.; Jiménez, M. and Paolinib, C. J., 2004, Land surface temperature retrieval from LANDSAT TM5, Remote Sensing of Environment, Vol. 90, PP. 434-440.
39. Streutker, D. R. A., 2002, Remote sensing study of the urban heat island of Houston, Texas, Int. J. Remote Sens, Vol. 23, PP. 2595-2608.
40. Sun, Q.; Tan, J. and Xu, Y., 2010, An ERDAS image processing method for retrieving LST and describing urban heat evolution: A case study in the Pearl River Delta Region in South China, Environ. Earth Sci. Vol. 59, PP. 1047-1055.
41. Tan, J. and Cherkauer, Keith A., 2013, Assessing stream temperature variation in the Pacific Northwest using airborne thermal infrared remote sensing, Journal of Environmental Management, Vol. 115, PP. 206-216.
42. U.S. EPA, 2007, Basic Information about Heat Island. Available online from following website: http://www.epa.gov/heatisland/about/index.html.
43. Voogt, J.A. and Oke, T. R., 2003, Thermal remote sensing of urban climates, Remote sensing of environment. Vol. 86, No. 3, PP. 370-384.
44. Wagrowski, D. M., and Hites, R., 1997, Polycyclic aromatic hydrocarbon accumulation in urban, suburban and rurual vegetation, Environmental Science & Technology, Vol. 31, No. 1, pp. 279-282.
45. Wear, D.; Turner, M. and Naiman, R., 1998, Land cover along an urban–rural gradient: Implications for water quality. Ecol. Appl. Vol. 8, PP. 619-630.
46. Weng, Q. and Schubring, j., .2004, Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment. Vol. 89, pp. 467–483.
47. Xian, G. and Crane, M., 2006, An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data, Remote Sensing of Environment, Vol. 104, No. 2, PP. 147-156.
48. Xiao, R., 2007, Spatial Pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China, Journal of Environ. Science, Vol.19, PP. 250-256.
49. Zhan, Q.; Meng, F. and Xiao, Y., 2015, Exploring the relationships of between land surface temperature, ground coverage ratio and building volume density in an urbanized environment. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 40, No. 7, PP. 255.