Urban development predictions direction of using a combination GIS and Bayesian the probabilistic model (case study: Ardabil)

Document Type : Research Paper

Author

Abstract

Extended Abstract
Introduction
Land is a major element in urban development. Therefore control how we use it, and also calculate the actual needs of the land, In order to satisfy different user in time and generalization And the generalization of matching numbers and the quantities obtained in solving the problem of the future, will work Affordable housing and urban development, (Khakpour et al., 47: 1386). The concept of land and urban space, both natural and economic and social development, qualitative change found and Resulting are richer in a very broad scope and objectives of urban land use. Certainly the use of land and space, as a general source of life and public property, shall be made under the planning principles (Ziyari, 13: 1381). The phenomenon of urbanization is a major concern for urban scholars (sun, Wu.Lv. &Wei, 2013:409). The process of migration of rural population to urban areas is too high (Wu, & Zang, 2012:137) is Unprecedented growth and expansion of the urban (Zing, & et al 2013:754). Urban growth is a spatial process of and social transformation In connection with the change of the urban area and is changing the way people live in different scales (Hayashi & Imura, 2009:133). One of the most important environmental issue related to changes in the twenty-first century is in many countries and regions, especially in developing countries (Jokar& et al, 2013:37). According to planners and experts forecast, in 2020 the urban population of 75% of the entire world will take its place in the absence of approximately 2% of the world's landmass (Bhatta, 2011). Urban development and increased migration to urban areas affect the physical and city-wide level is brought into the surrounding areas Suitable and unsuitable land and urban areas urban development unrestrained influx.
Methodology
In this study, Bayesian techniques have been used in the past to see the future development directions and satellite imagery using is Landsat ETM images of 1987 and 2013 Model and predict future directions for the development of acquired and developed a database of the most important factors that influence the research process.In this study, using 14 parameters of natural and anthropogenic (Elevation, vegetation, land units, main roads, secondary roads, dirt, away from the river, the earthquake happened, geology, industrial zone, steep terrain, airports, land use and distance to fault) Urban development has been done to predict. The first step of this process was obtained topographic maps using the layer elevation model (DEM) with a pixel size of 30 m. With this layer using the various functions available in GIS software packages such as gradient layer, which is used in the model were extracted. Developed areas of the city in the period from 1987 to 2013 using Landsat ETM satellite images were selected for modeling Two-thirds of these areas as areas of modeling and control to find the weight classes were used and a third was used for model evaluation. The Landsat images using bands 3 and 4 was prepared vegetation index (NDVI). For the preparation of land use map of the study area ENVI image processing software and methods of supervised classification is used (maximum likelihood algorithm (MLC)) and Landsat color image.
Discussion
To predict the future development direction were used of the weight of the evidence (Carter et al., 1989). This model is useful as a model and tested in different contexts. The weight of evidence is a statistical method based on Bayesian probability theory (Dennison et al., 2002). The model dependence between an event (physical development in the past) and causal factors (predisposing factors of physical development) estimates. If our causal factors (predisposing factors and physical development of the city) to B, _i and physical development classes each parameter S in the past to consider, In the case of Bayesian theory for calculating the conditional probability of physical development (S) in a given class (B_i), the following equation can be used:
P(s│B_i )= (P(B_i│s)×P(s))/(P(B_i))
After the weight of each class of parameters were considered, the application environment for each weight class were exposed Arc map And the synthesis parameters on the final map was found to predict the development of the city. Using natural fracture maps obtained were classified into 5 classes.
Results
Nowadays, with the rapid growth of cities in developing and developed So that the urban development process and how change at the macro level is One of the most important issues facing researchers on urban issues. Increase of population and the development of non-principal cities, especially in developing countries, the results of will follow such. The loss of resources, lack of compatibility with existing infrastructure in urban growth, changing agricultural land suitable for urban use and increased costs such as housing, Transportation. In this regard the Ardabil Province, especially after being in the process of expanding its Despite laws and regulations inhibitors such as arable land and gardens Act, The preservation and expansion of green space in cities, in the process of expanding its disproportionate impact on the environment with Green and Natural Resources, which includes gardens and city farms and plantations have been lost due to irregular growth and urban diffuse And some villages have been incorporated into the urban fabric.Modeling requirements for future development in the city can be a useful tool, planners can assist in forecasting future needs of the city. This study using satellite images for the years 2013 and 1987 and 14 standard Bayesian theory of natural and man in urban development (Elevation, vegetation, land units, main roads, secondary roads, dirt, away from the river, the earthquake happened, geology, industrial zone, steep terrain, airports, land use and distance to fault), Predict the direction of future physical development of the city of Ardabil, conducted and results were presented as a map Phnh‌Bndy in five classes. The zoning map 17/8 percent of the class with the ability to develop very large area, 29.6% in office with great development potential, 20.4 percent of middle-class capabilities, 18.9 percent and 24.3 percent of the class with low development potential have been in the classroom with very little development capabilities.

Keywords

Main Subjects


ابراهیم‌زاده، عیسی و قاسم رفیعی، 1388، مکان‌یابی بهینه جهت گسترش شهری با بهره‌گیری از سیستم اطلاعات جغرافیایی (مطالعۀ موردی: شهر مرودشت)، جغرافیا و توسعه، شمارة 15، صص 35- 70.
 
اصغری زمانی، اکبر، 1386، ارزیابی و پیش‌بینی گسترش فضایی- کالبدی شهرهای ایران، مطالعة موردی: شهر زنجان، رسالة دکتری جغرافیا و برنامه‌ریزی شهری، دانشگاه تبریز، تبریز.
پورقاسمی، حمیدرضا، مرادی، حمیدرضا، محمدی، حمید، مصطفی‌زاده، رئوف و عباس گلی جیرنده، 1391، پهنه‌بندی خطر زمین‌لغزش با استفاده از تئوری بیزین، مجلة علوم و فنون کشاورزی و منابع طبیعی، علوم آب‌وخاک، سال شانزدهم، شمارة 62، صص 109- 121.
پورخباز، حمیدرضا، 1389، مدلسازی توان اکولوژیک کاربری توسعة شهری، رسالة دکتری، دانشکدة جغرافیا دانشگاه تهران، تهران.
جوانمردی، سعیده، فرجی سبکبار، حسنعلی، یاوری، احمدرضا و حمیدرضا پورخباز، 1390، ارزیابی چندمعیارة تناسب اراضی برای کاربری کشاورزی با استفاده از GIS (مطالعة موردی: منطقة قزوین)، مجلة پژوهش‌های محیط‌زیست، سال دوم، شمارة 4، صص 51- 60.
حیدریان، پیمان، رنگزن،کاظم، ملکی، سعید، تقی‌زاده، ایوب، 1393، تلفیق تکنیک‌های سنجش از دور، GIS  و مدل LCM با رویکرد مدل‌سازی توسعۀ شهری (نمونۀ موردی: کلان‌شهر تهران)، نشریۀ مطالعات جغرافیایی مناطق خشک، سال پنجم، شمارۀ 17، صص 100-87.
رحمتی، صفرقائد و نسیم حیدری­نژاد، 1388، گسترش فیزیکی شهرها و ضرورت تعیین حریم امن شهری (نمونه: شهر اصفهان)، مجلة جغرافیا و مطالعات محیطی، دورة اول، شمارة 1، صص 14- 24.
شیعه، اسماعیل، 1380، شهر و منطقه در ایران، شرکت پردازش و برنامه‌ریزی شهری، تهران.
شیعه، اسماعیل، 1377، مقدمه‌ای بر مبانی برنامه‌ریزی شهری، انتشارات دانشگاه علم و صنعت، تهران.
صدوق ونینی، سیدحسن، توکلی­نیا، جمیله و امید زارعی، 1388، پهنه‌بندی زمین برای توسعۀ فیزیکی شهر شیراز با استفاده از GIS و AHP، فصلنامة سپهر، دورة هجدهم، شمارة 72، صص 32- 39.
نظم‌فر، حسین و علی بخشی، آمنه، 1396، نابرابری فضایی درجۀ توسعۀ شهرستان‌های استان خوزستان با تأکید بر توسعۀ پایدار، مجلۀ آمایش جغرافیایی فضا ، سال ششم، شمارۀ 4، صص1-24.
Asghari, A., 2007, Assessment and Prediction of Physical Spatial Expansion of Cities, Case Study: City Zanjan, Geography and Urban Planning thesis, University of Tabriz, Tabriz. (In Persian)
Bhatta, B., 2010, Analysis of Urban Growth and Sprawe, from Remote Sensing Data: Berlin, Heidelberg: Springer-Verlag.
Batisani, N. and Yaenal. B., 2009, Urban Expansion in Center Country, Pennsylvania: Spatial Dynamics and Landscape Transformations, Applied Geography, Vol. 29, No. 2, PP. 235-249.
Bonham-Carter, G.F., Agterberg, F.P. and Wright, D.F., 1989, Weights of Evidence Modelling: A New Approach to Mapping Mineral Potential, In: Agterberg, F.P., Bonham-Carter, G.F. (eds.), Statistical Applications in the Earth Sciences: Geological Survey of Canada, Paper, Vol. 89, No. 9, PP. 171–183.
 
Barbieri, G. and Cambuli, P., 2009, The Weight of Evidence Statistical Method in Landslide Susceptibility Mapping of the Rio Pardu Valley (Sardinia, Italy), International Association for Mathematics and Computers in Simulation, July 2009, PP. 2658–2664.
 
Denison, D.G.T., Holmes, C.C., Mallick, B.K. and Smith, A.F.M., 2002, Bayesian Methods for Nonlinear Classification and Regression, John Wiley & Sons, Chichester.
 
Dadashpour, H. and Zareei, E., 2011, Changes Predicted by the Model of Urban Development of the City Nowshahr Using the Model LUCIA, Journal of Research and Urban Planning, Vol. 3, No. 11, PP. 37–58. (In Persian)
 
Ebrahimzadeh, E. and Rafiee, G., 2009, The Optimal Location for Urban Development Utilizes GIS (Case Study: City of Shiraz), Geography and Development, Vol. 7, No. 15, PP. 35–70. (In Persian)
Feizizadeh, B., Blaschke, T and Nazmfar, H., 2014, GIS-based ordered weighted averaging and Dempster–Shafer methods for landslide susceptibility mapping in the Urmia Lake Basin, Iran,
International Journal of Digital Earth, Vol. 7, No. 8, PP. 688–708.
 
 
Heydarian, P., Rangazn, K. and Maleki, S., 2013, Integration of Remote Sensing Techniques to the Modeling Approach Urban Development (Case Study: Tehran Metropolis), Journal of Geographical Studies of Arid Zones, Vol. 5, No. 17, PP. 87–100. (In Persian)
 
Han, J., Hayashi, Y., Cao, X. and Imura, H., 2009, Application of an Integrated System Dynamics and Cellular Automata Model for Urban Growth Assessment: A Case Study of Shanghai, China, Landscape and Urban Planning, Vol. 3, No. 2, PP. 133–141.
Javaheir, H., 2006, Site Selection of Municipal Solid Waste Landfill Using Analytical Hierarchy Process Method in Geographical Information System Technology Environment in Jiroft, Iran. J. Environ. Health. Sci. Eng Vol. 3, No. 3, PP. 177–184.
Jokar Arsanjani, J., Helbich, M. and De Noronha Vaz, E., 2013, Spatiotemporal Simulation of Urban Growth Patterns Using Agent-Based Modeling: The Case of Tehran, Cities, Vol. 32, No. 3, pp. 33–42.
Javanmardi, S., Faraji Sabokbar, H., Yavari, A and Pourkhabbaz, H. R., 2010, Multi-Criteria Evaluation of Land Suitability for Agriculture Using GIS (Case Study: Qazvin Region), Journal of Agricultural Science and Technology, Vol. 2, No. 4, PP. 51–60. (In Persian).
Nazmfar, H., 2012, An analysis of urban system with emphasis on entropy model (Case study: the cities of East Azerbaijan Province), Indian Journal of Science and Technology, Vol. 5, No. 9, PP. 340–344.
Nazmfar, H.,  Ali Bakhsi, A., 2017, Evaluation Spatial inequality of development of the city in the province with an emphasis on sustainable development, Geographicap Planning of Space Quarterly Journal, Vol. 6, No. 22, PP. 1–24. (In Persian)
Parka, S., Jevons, S. and Kimc, Sh., 2011, Prediction and Comparison of Urban groweh by land Suitability Index Mapping Using GIS and Rs in South Korea, Landscape and Urban planning, Vol. 11 No. 2, PP. 104-114.
Piacentinia, D., Troiani, F., Soldati, M., Notarnicola, C., Savelli, D., Schneiderbauer, S., Strada, C., 2012, Statistical Analysis for Assessing Shallow-Landslide Susceptibility in South Tyrol (South-Eastern Alps, Italy), Geomorphology, Vol. 22, No. 151, PP. 196–206.
Poli, S and Sterlacchini, S., 2007, Landslide Representation Strategies in Susceptibility Studies Using Weights-of-Evidence Modeling Technique, Natural Resources Research, Vol. 16, No. 2, PP. 121–134.
Pourghassemi, H. R.,  Moradi , M. Mohammdi, R. Mostafazadeh, A. Goli Jirandeh, 2011, Landslide Hazard Zoning Using Bayesian Theory, Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Sciences, Vol. 16, No. 62, PP. 121–109. (In Persian)
Pourkhabbaz, H. R., 2009, Modeling the Use of Ecological Urban Development, PhD Thesis, Department of Geography, Tehran University, Tehran. (In Persian)
Rahmati, S. and Heydarinejad, N., 2008, Physical Expansion of Cities and the Need to Determine the Safety of the City (Example: City of Isfahan), Journal of Geography and Environmental Studies, Vol. 1, No. 1, PP. 14–24. (In Persian)
Sadough Vnniny, Tavakoliniya, H. and Zare, O., 2008, The Zoning of Land for the Physical Development of the City Using GIS and AHP, Journal of Sepehr, Vol. 18, No. 72, PP. 32–39. (In Persian)
Seto, K. C., Woodcock, C. E., Song, C& R. K. Kaufmann, 2003, Monitoring Land-Use Change in the Pearl River Delta using Landsat TM, International Journal of Remote Sensing, Vol. 23, No. 10 PP. 1985-2004.
 
Shiea, I., 2000, Introduction to the Principles of Urban Planning, University of Science and Technology, Tehran. (In Persian)
Shiea, I., 2001, The City and Region of the Country, Processes and Urban Planning Company, Tehran. (In Persian)
Sun, C., Wu, Z., Lv, Z., Yao, N. and Wei, J., 2013, Quantifying Different Types of Urban Growth and the Change Dynamic in Guangzhou Using Multi-Temporal Remote Sensing Data, International Journal of Applied Earth Observation and Geoinformation, Vol. 21, No, 2, PP. 409–417.
Wu, K. and Zhang, H., 2012, Land Use Dynamics, Built-up Land Expansion Patterns, and Driving Forces Analysis of the Fast-Growing Hangzhou Metropolitan Area, Eastern China (1978–2008), Applied Geography, Vol. 11, No. 34, PP. 137–145.
Zhang, J., Wang, K., Song, G., Zhang, Z., Chen, X. and Yu, Z., 2013, Application of Multi-Agent Models to Urban Jokar Arsanjani, Chinese Geographical Science, Vol. 12, No. 23, PP. 754–764.