Spatial Analysis of Urban Settlement Regarding to the Iran, Environmental Indicators

Document Type : Research Paper

Authors

1 Postdoctoral researcher, Department of Physical Geography, Faculty of Geographical Sciences and Planning, University of Isfahan, Isfahan, Iran

2 Professor, Department of Physical Geography, Faculty of Geographical Sciences and Planning, University of Isfahan, Isfahan, Iran

Abstract

Introduction
Cognation and discovering the Logic of Settlement Syntax in the Iran It is effective in creating and developing population centers. However, the discovery of spatial relations and the logic that dominates it can be used in the preparation of the document of the fundamental spatial planning of the land of Iran and the landscapes of Iran. This research is based on the theory of space syntax and aims to Land cognation and discovering the rules of spatial syntax of settlements and with a quantitative-analytical and modeling method, using Python programming and geographic information system (GIS), it has analyzed the pattern of space syntax of urban settlements and space configuration. Space syntax of urban settlements in Iran, using environmental parameters such as; elevation, slope, convex and concave surfaces, land surface temperature (LST), precipitation, relative humidity and urban demographic space have been considered and by combining these parameters, the raster data model and new concepts have been invented and explained. After thresholding and coding the raster data model, the spatial relationships between them are processed and Compound Geomorphic Systems for Iran have been extracted. and then the spatial syntax pattern of urban settlements has been analyzed in each of the geomorphic systems and subsystems. The results show that the patterns, context and spatial syntax of urban settlements in Iran have interacted with geomorphic systems and the analysis of spatial syntax can express the macro-strategies of the residential system in Iran based on the foundations of fundamental spatial planning.
The method of space syntax is the basis for understanding the configuration and analysis of environmental structures. In this research, what is considered as a question; The Logic of Settlement Syntax in Iran.
Materials and methods
In this research, the approach of space syntax has been proposed and using quantitative-analytical method, based on environmental parameters, the space syntax pattern of urban settlements has been analyzed; Therefore, in order to achieve the research goals, the following process has been designed:
Step one: Determining and recognizing the land of Iran and understanding the subject of research.
Step 2: Study the documentary sources.
Step 3: Prepare the database.
Step 4: Raster Analysis, Modeling the earth and Environmental classification and threshold. In this step, the optimized Natural Breaks (Jenks) algorithm provided by Jenks is used for environmental threshold This method is one of the 7 methods of classifying tolls in the geographic information system (GIS). The natural breaks method is one solution to the failure of maximum breaks to consider natural groupings of data. In natural breaks, graphs are examined visually to determine logical breaks (or, alternatively, clusters) in the data. Stated another way, the purpose of natural breaks is to minimize differences between data values in the same class and to maximize differences between classes. Later we will see that this is also the objective of the optimal method, but with the optimal method, the classification is done using a numerical measure of classification error, whereas with natural breaks, the classification is subjective.
Step 5: Estimation of the number and total urban population in the class - codes and presentation of new models and graphic Patterns in the field of space analysis and analysis of the spatial syntax pattern of urban settlements in Iran.
Results and discussion
In this research, for the recognition and paraphrase of space, geomorphic and climatic elements; Altitude, slope, land curvature, temperature, precipitation and relative humidity have been analyzed as environmental components, selected and spatial syntax of urban settlements in Iran.
Iran is part of a highland called the Iranian Plateau. Mountainous heights and landscapes and the height differences of this area are the most prominent features of the land, the extent of which is impressive not only in terms of nature but also in terms of residential space and it has caused a lot of environmental diversity and environmental differences.
therefore; Due to altitude diversity; Which is the main factor in the emergence and development of large- Scale Geomorphic systems of different geomorphological formations and landscapes in the land of Iran, in this study, altitude is considered as an independent variable and other parameters as dependent variables.
Generally, the classifications are based on the factors of elevation-slope, elevation-curvature, elevation-temperature, elevation-precipitation and elevation-relative humidity and Iran, based on each of these environmental characteristics, is divided into 4 main systems and a combination of 16 subsystems. Each of these subsystems has certain differences in terms of geomorphic structure and each has an area of Iranian territory.
The final result of this spatial analysis; Procurement of formation systems and subsystems with specific geomorphic characteristics in the territory of Iran and preparation of graphic maps and models Curveo-Hypsographic, Gradio-Hypsographic, Thermo-Hypsographic, Meteoro-Hypsographic and Humio-Hypsographic.
After preparing a map of the formation systems, steps have been taken to analyze the level of civilization in each of the subsystems, to find out which subsystems in each environmental system have the most urban civilization, Or the power of urbanization of each subsystem. This analysis is based on location, number of urban settlements and the total urban population in each subsystem.
Conclusion
The classification system presented in this study, which is done by combining the altitude parameter with 5 other environmental parameters, has presented different Compound Geomorphic Systems. This classification can be applied in various fields of geomorphology and even other natural geography trends. Each of the five proposed systems, which includes 16 other subsystems, will be used in pure geomorphology. To identify, differentiate, and identify Landforms, depending on the type of dominant Geomorphic Systems in each environment, the results can be used in the hierarchical organization of geomorphological research work. Also, for climatic classifications with a geomorphological perspective that climatologists pay less attention to, the results of such research can be useful. The results of this study are widely used in the classification of Compound Geomorphic Systems in various fields of geomorphology and climatology and fields related to human geography and population geography, and in growth and development. The theoretical and practical fields of these sciences will be effective.

Keywords


  1. ابراهیم‏زاده، عیسی، 1393، آمایش سرزمین و نقش آن در تبیین الگوی اسلامی- ایرانی پیشرفت، سلسله تک‏نگاشت‏های الگوی اسلامی ایرانی پیشرفت، نشر الگوی پیشرفت.
  2. پرتوی، پروین، 1394، پدیدار‏شناسی مکان، چ 3، تهران: نشر متن، فرهنگستان هنر.
  3. تقی‌لو، علی‏اکبر و موسوی، میرنجف، 1391، نقش عوامل ژئومورفولوژیکی (ارتفاع) در آمایش سرزمین سکونتگاه‏های شهری استان آذربایجان غربی، همایش ملی انجمن ایرانی ژئومورفولوژی، دورة 1.
  4. رسولی، علی‏اکبر، 1387، مبانی سنجش از دور کاربردی با تأکید بر پردازش تصاویر ماهواره‏ای، انتشارات دانشگاه تبریز.
  5. رهنمایی، محمدتقی، 1393، ایران توان‏های محیطی و طبیعی آن، تهران: انتشارات مهکامه.
  6. سازمان فضایی ایران، 2016، تصاویر ماهواره‏ای MODIS، https://isa.ir
  7. صلحی، سینا و سیف، عبداله، 1397، مورفولوژی نوری و کاربرد آن در ژئومرفولوژی، پژوهش‏های جغرافیای طبیعی، دورة 50، شمارة 4، صص 611-638.
  8. عباسی، داوود، 1386، بررسی نقش عوامل ژئومورفولوژیک در آمایش شهری،همایش ملی جغرافیا و آمایش سرزمین، همدان، دانشگاه آزاد اسلامی واحد همدان.
  9. عباسی، علیرضا، 1387، ویژگی‏ها و پراکندگی فضایی مخروط‏افکنه‏های ایران و رابطة آن با سیستم‏های شکل‏زای اقلیمی، رسالة دکتری، جغرافیای‏ طبیعی (ژئومورفولوژی)، استاد راهنما دکتر محمدحسین رامشت، دانشگاه اصفهان.
  10. عفیفی، محمدابراهیم، 1396، راهبردهای علمی نقش عوامل طبیعی در استقرار سکونتگاه‏های شهری و روستایی با استفاده از GIS، مطالعة موردی بخش جویم لارستان، نگرش‏های نو در جغرافیای انسانی، سال 9، شمارة 3، صص 125–
  11. فاطمی، سیدباقر و رضایی، یوسف، 1389، مبانی سنجش از دور، چ 2، تهران: انتشارات آزاده.
  12. فتوحی، صمد، 1386، تأثیر فرم‏ها و فرایندهای ژئومورفیک بر مبنای آب زیرزمینی (مطالعة موردی پلایای داراب)، رسالة دکتری، جغرافیای‏طبیعی (ژئومورفولوژی)، استادان راهنما دکتر محمدحسین رامشت، دکتر ایران غازی، دکتر مسعود معیری، دانشگاه اصفهان.
  13. مرکز آمار ایران، 1395، سال‏نامة آماری ایران،https://www.amar.org.ir/
  14. موسوی، میرنجف؛ نظم‏فر، حسین و آفتاب، احمد، 1392، بررسی نقش عوامل طبیعی در توزیع جغرافیایی جمعیت و سکونتگاه‏های شهری با استفاده از GIS و Geoda مطالعة موردی استان آذربایجان غربی، جغرافیا و مطالعات محیطی، سال 2، شمارة5، صص 80-98.
  15. نادری مایوان، رمضان‏علی، 1394، کاربرد ژئومورفولوژی در برنامه‏ریزی‏ شهری،اولین همایش علمی پژوهشی افق‏های نوین در علوم جغرافیا و برنامه‏ریزی، معماری و شهرسازی ایران، تهران: انجمن علمی توسعه و ترویج علوم و فنون بنیادین.
  16. نقی‏زاده، محمد و استادی، مریم، 1393، مقایسة تطبیقی مفهوم ادراک و فرایند آن در فلسفه و روان‏شناسی محیط و کاربرد آن در طراحی شهری، پژوهش‏های معماری اسلامی، دورة 1، شمارة 3، صص 3-14.
  17. Abbasi, A. R., 2000, Characteristics and spatial distribution of major alluvial fans in Iran and their relations with formative process, Ph.D. Thesis natural geography (Geomorphology), Supervisor Massoud Moayeri, Mohammad Hossein Ramasht, University of Esfahan.
  18. Abbasi, D., 2008, Study role Geomorphological factors in urban planning, National Conference on Geography and Land use planning, Hamedan, Islamic Azad University of Hamadan.
  19. Afifi, M. E., 2017, Scientific strategies the role of natural factors in the establishment of urban and rural settlements Using GIS (Case Study: Juyom Section Larestan), New approaches in human geography, Ninth year, No. 3, pp. 125-144.
  20. Earth Observation Research Center (EORC), and Japan Aerospace Exploration Agency (JAXA), 2018, ALOS Global Digital Surface Model (DSM) ALOS World 3D-30m (AW3D30) Version 2.1 Product Description.
  21. Ebrahimzadeh, I., 2015, Land use planning and its role in explaining the Islamic - Iranian model of progress, A series of monographs on the Iranian Islamic model of progress, Publication of the progress model.
  22. Fatemi, S. B. and Rezaii, Y., 2011, Principles of Remote Sensing, second edition, Tehran: Azadeh Publications.
  23. Fotihi, S., 2007, Influence of geomorphic forms and processes based on groundwater Case study: Darab Playa, D. Thesis natural geography (Geomorphology), Supervisors Mohammad Hossein Ramasht, Iran Ghazi, Massoud Moayeri, University of Esfahan.
  24. Giglio, Louis; Luigi Boschetti, David Roy, Anja A. Hoffmann and Michael Humber, 2016, Collection 6 MODIS Burned Area Product User’s Guide, Version 1.0, pp. 26.
  25. Hengl, T. and Reuter, H. I. (Eds.), 2008, Geomorphometry: concepts, software, applications. Newnes.
  26. Hillier, B. and Hanson, J., 1984, The Social Logic of Space, Cambridge: Cambridge University Press.
  27. Horn, B.K.P., 1981, Hill shading and the reflectance map. Proceedings of IEEE, 69(1), 14-47.
  28. Howard, H. H.; McMaster, R. B.; Slocum, T. A. and Kessler, F. C., 2008, Thematic cartography and geo visualization.
  29. http://wiki.gis.com/wiki/index.php/Jenks_Natural_Breaks_Classification#cite_note-McMaster-3
  30. http://wiki.gis.com/wiki/index.php/Jenks_Natural_Breaks_Classification
  31. https://earthexplorer.usgs.gov
  32. https://modis.gsfc.nasa.gov/data/dataprod/
  33. https://search.earthdata.nasa.gov/search
  34. https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
  35. Iranian Space Agency, 2016, MODIS satellite images, https://isa.ir
  36. Li, Z.; Zhu, C. and Gold, C., 2004, Digital terrain modeling: principles and methodology. CRC press.
  37. Montello, Daniel R., 2007, The Contribution of Space Syntax to a Comprehensive Theory of Environmental Psychology. 6th International Space Syntax Symposium, İstanbul. (P. iv 1-12).
  38. Mousavi, M. N.; Nazmafar, H. and Aftab, A., 2013, Study the role of natural factors in the geographical distribution of the population and urban settlements using GIS and Geoda, a case study of West Azerbaijan Province, Geography and Environmental Studies, Second year, No. 5, pp. 80-98.
  39. Naderi Mayvan, R., 2015, Application of Geomorphology in Urban Planning, The first scientific research conference new Horizons in Geography and Planning, Iranian Architecture and Urban Planning, Tehran, Scientific Association for the Development and Promotion of Fundamental Science and Technology.
  40. Naqizadeh, M. and Ostadi, M., 2014, Comparative comparison the concept of perception and its process in environmental philosophy and psychology and its application in urban design, Research in Islamic Architecture, Vol. 1, No. 3, pp. 3-14.
  41. Nikolakopoulos, K. G.; Kamaratakis, E. K. and Chrysoulakis, N., 2006, SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece,International Journal of Remote Sensing. Vol. 27, No. 21, pp. 4819-4838.
  42. Partovi, P., 2015, Phenomenology of place, Third edition, Text publishing, Tehran: Academy of Art.
  43. Rahnemai, M. T., 2015, Iran, The spatial and natural potential, Tehran: Mahkameh Publications.
  44. Rana, S., 2006, Use of Plan Curvature Variations for the Identification of Ridges and Channels on DEM, in: Progress in Spatial Data Handling, edited by: A. Riedl, W. Kainz, and G. Elmes, SpringerVerlag, Heidelberg, Germany, 789–804.
  45. Rasouli, A. A., 2008, Principles of Applied Remote Sensing with an emphasis on satellite image processing, Publishers Tabriz University.
  46. Solhi, S. and Seif, A., 2019, Optical Morphology and its Application in Geomorphology, Physical Geography Research, Vol. 50, No. 4, pp. 611-638.
  47. Statistical Center of Iran, 2016, Iran Statistical Yearbook, https://www.amar.org.ir/
  48. Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K. and Iwamoto, H., 2016, Generation of the 30 M-Mesh Global Digital Surface Model by ALOS PRISM, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS, Vol. XLI-B4, pp.157-162.
  49. Taghilo, A. A. and Mosavi, M., 2013, The role of geomorphological factors (height) in Land use planning Urban settlements of West Azerbaijan province, 1, National Conference of the Iranian Geomorphological Association.