Comparative Analysis of the Urban Heat Island Intensity Based on Urban Geometry (Case Study: Valiasr and Shanb Ghazan Neighborhoods of Tabriz)

Document Type : Research Paper

Authors

1 Associated Professor. of Geography and Urban Planning, University of Tabriz

2 MSc. Remote Sensing and Geographic Information Systems,, University of Tabriz

Abstract

The thermal island phenomenon is the excess heat on the surface of the earth and the atmosphere of urban areas compared to its suburbs. Thermal island by changing the pattern of local winds, enhancing the growth of clouds and fog, increasing lightning and affecting rainfall, lowers the urban air and causes discomfort and discomfort to city dwellers and by affecting human health, the possibility of asthma and various diseases Increases other respiration. Therefore, this research has been done with the nature of developmental-applied and descriptive-analytical and the purpose of simulation and calculation of the maximum intensity of urban heat islands (UHImax) according to urban geometry conditions in Valiasr and Shanb Ghazan alleys of Tabriz.
The present research is descriptive-analytical in terms of method and has a developmental-applied nature. In this study, the required data were obtained through library, documentary and field studies. In this research, Landsat satellite imagery of 8 OLI and TIRS sensors in 163 and row 34 for the years 13/01/2019 and 12/08/2019 has been used. The method of this research is based on Oke numerical-theoretical equation. To do this, first the geometry of the desired areas according to a radius of 20 meters in Valiasr alley and 15 meters in the Ghazan slope from the axis of the passages to separate blocks and then the ratio of width of the passages and height of the building (H / W) in GIS software Finally, based on Oke equation, UHImax was calculated and simulated.
In this study, in order to calculate the height-width ratio (H / W), first using ARCGIS10.5 software, the central axis of the passages was determined and then to determine the average height of buildings effective in thermal island changes, a radius of 20 meters left and right of the passages for Valiasr alley and a radius of 15 meters was considered for Shanb Ghazan area (the choice of radii depended on the width of the passages). After selecting the appropriate radius for both areas, the blocks were extracted and separated. According to the number of building floors (1 to 5) for Shanb Ghazan area and (1 to 11) for Valiasr alley and the average height of each block, the amount of homogeneity or heterogeneity of each block was determined. According to the passages, the blocks of the studied areas were divided into 10 different blocks from A to J. After selecting the appropriate radius of the building block in each axis, the height of the buildings was classified into three categories: low, medium and high. Then, using the H / W ratio, the intensity of the thermal island in each block was calculated. Also, in order to estimate the effect of the width of the passages and the height of the building on the changes in the intensity of the thermal island of Tabriz, a multiple regression model was used. Finally, after calculating the intensity of the thermal island in Valiasr and Shanb Ghazan alleys, the intensity of the thermal islands in both regions were compared and compared with the Earth surface temperature (LST) map obtained from the Landsat 8 satellite TIRS sensor.
The results showed that the increase in population and construction in Tabriz metropolis has caused an increase in temperature. The results obtained from both areas showed that the physical and geometric conditions of Tabriz have a great impact on increasing the thermal island of the city, so that the taller the buildings and the smaller the width of the passages, the intensity of the thermal island The more and vice versa, the lower the intensity of the thermal island. As the width of the passages decreases, the pattern of local winds changes and they can rarely circulate freely in the passages, directing the heat out of the environment and adjusting the temperature there. Narrow passages absorb heat during the day and keep it in the urban environment for hours after sunset. These narrow passages, like deep and narrow valleys, reduce the long wavelength of radiation from the narrow width of the street and keep the heat at the surface of the passages, which increases the intensity of the thermal island. As the results showed, in Valiasr alley, among 10 blocks, block D with 1.9 degrees and block H with 8.2 degrees Celsius has the lowest and highest values of thermal island intensity. In Shanb Ghazan region, among the blocks, block G with 0.8 degrees has the lowest and block B with 6.8 degrees has the highest heat island intensity. Therefore, it can be acknowledged that according to the width of the passages and the height of the buildings in Valiasr alley and Shanb Ghazan area, blocks D and G have the most standard configuration and blocks H and B have the most standard configuration in these areas. The final results showed that although the height of the building has a significant role in increasing the intensity of the thermal island, but based on the estimation of the multivariate regression model, the effect of the width of the passages in Valiasr alley with 0.91 is much greater than the height of the building with 0.6 and Shanb Ghazan area with 0.92 much more than the height of the building with 0.5 is involved in changes in the intensity of the thermal island. Also, the comparison of the variables of width of passages and height of buildings in the studied areas showed that the width of passages in Valiasr alley had the least effect compared to Shanb Ghazan area and the height of buildings was the opposite. The results of surface temperature in the study areas also showed that Valiasr alley has the highest and lowest temperatures in winter and summer, respectively, while the surface temperature in both winter and summer in Shanb Ghazan region did not differ much. And the surface temperature in this area is low.

Keywords

Main Subjects


  1. رمضانی، بهمن و دخت‏محمد، سیده‏مریم، 1389، شناخت محدودة مکانی تشکیل جزیرة گرمایی در شهر رشت، پژوهش و برنامه‏ریزی شهری، دورة 1، شمارة 1، صص 49-64.
  2. شکیبا، علیرضا؛ ضیائیان فیروزآبادی، پرویز؛ عاشورلو، داوود و نامداری، سودابه، 1388، تحلیل رابطة کاربری و پوشش اراضی و جزایر حرارتی شهر تهران، با استفاده از داده‏های ETM و TM، مجلة سنجش از دور و GIS، سال 1، شمارة 1، صص 39-56.
  3. صادقی‏نیا، علیرضا؛ علیجانی، بهلول و ضیائیان، پرویز، 1391، تحلیل فضایی- زمانی جزیرة حرارتی کلان‏شهر تهران با استفاده از سنجش‏‏ از دور و سیستم اطلاعات جغرافیایی، مجلة جغرافیا و مخاطرات محیطی، سال 1، شمارة 4، صص 1-17.
  4. عزیزی، قاسم؛ شمسی‏پور، علی‏اکبر؛ مهدیان ماه‏فروزی، مجتبی و میری، مرتضی، 1392، تأثیرپذیری شدت جزیرة گرمایی شهری تهران از الگوهای همدیدی جو، فصل‏نامة محیط‏شناسی، دورة 39، شمارة 4، صص 55-66.
  5. عشقی، ابوالفضل و قنبرزاده،‏ هادی، 1387، مبانی میکروکلیماتولوژِی و آب و هوای محلی، مشهد: سخن‏گستر.
  6. علوی‏پناه، سیدکاظم، 1397، کاربرد سنجش از دور در علوم زمین (علوم خاک)، تهران: دانشگاه تهران.
  7. علیجانی، بهلول؛ طولابی‏نژاد، میثم و صیادی، فریبا، 1396، محاسبة شدت جزیرة حرارتی بر اساس هندسة شهری موردمطالعه: (محلة کوچه‏باغ شهر تبریز)، نشریة تحلیل فضایی مخاطرات محیطی، سال 4، شمارة 3، صص 99-112.
  8. فرید، یداله، 1388، جغرافیا و شهرشناسی، تبریز: دانشگاه تبریز.
  9. کاویانی، عباس؛ سهرابی، تیمور و دانش‏کار آراسته، پیمان، 1392، تخمین دمای سطح زمین با استفاده از شاخص اختلاف نرمال‏شده (NDVI) در تصاویر سنجنده‏های MODISوLandsat ETM ، نشریة هواشناسی کشاورزی، دورة 1، شمارة 1، 14-25.
  10. کرمی‏راد، سینا؛ آبادی، محمدعلی و حبیبی، امین، 1397، سنجش تأثیر هندسة شهری بر شرایط آسایش حرارتی بیرونی در مقیاس خرداقلیم در فضای باز مجتمع مسکونی گلدشت شیراز، فصل‏نامة برنامه‏ریزی منطقه‏ای، سال 8، شمارة 29، صص 161-172.
  11. مجنونی توتاخانه، علی و رمضانی، محمد ابراهیم، 1398، بررسی و ارزیابی وضعیت جزیرة حرارتی کلان‏شهر تهران با استفاده از تصاویر ماهواره‏ای، محیط زیست طبیعی (منابع طبیعی ایران)، دورة 72، شمارة 1، صص 29-
  12. محرمی، جاوید، 1393، بررسی نقش کاربری اراضی در تولید جزیرة گرمایی شهری (مطالعة موردی: شهر تبریز)، پایان‏نامة کارشناسی ارشد، دانشگاه تبریز.
  13. محمودزاده، حسن؛ نقدبیشتی، افسانه و مؤمنی، سحر، 1397، تأثیر کاربری‏های شهری در ایجاد جزایر حرارتی (مطالعة موردی: شهر مشهد)، جغرافیا و مخاطرات محیطی، سال 7، شمارة 27.
  14. موسوی‏ بایگی، محمد؛ اشرف، بتول؛ فرید حسینی، علیرضا و میان‏‏آبادی، آمنه، 1391، بررسی جزیرة حرارتی شهر مشهد با استفاده از تصاویر ماهواره‏ای و نظریة فرکتال، مجلة جغرافیا و مخابرات محیطی، سال 1، شمارة 1، صص 35-49.
  15. هاشمی، سیدمحمود؛ علوی‏پناه، سیدکاظم و دنیاروندی، مرتضی، 1392، ارزیابی توزیع مکانی دمای سطح زمین در محیط زیست شهری با کاربرد سنجش از دور حرارتی، فصل‏نامة محیط‏شناسی، دورة 39، شمارة 1، صص 723-734.
  16. Andrew, F., 2012, Exploring the relationship between land surface temperature and vegetation abundance for urban heat island mitigation in Seville, Spain, Division of Physical Geography and Ecosystem Analysis, Lund University.
  17. Chen, H.; Ooka, R. and Kato, S., 2008, Study on optimum design method for pleasant outdoor thermal environment using genetic algorithms (GA) and coupled simulation of convection, radiation and conduction, Building and Environment, Vol. 43, No. 1, PP. 18-30.‏
  18. Chen, H.; Ooka, R. and Kato, S., 2008, Study on optimum design method for pleasant outdoor thermal environment using genetic algorithms (GA) and coupled simulation of convection, radiation and conduction. Building and Environment, 43(1), 18-30.
  19. Chow, W. T. and Roth, M., 2006, Temporal dynamics of the urban heat island of Singapore, International Journal of Climatology: A Journal of the Royal Meteorological Society, Vol. 26, No, 15, PP. 2243-2260.‏
  20. Dhalluin, A. and Bozonnet, E., 2015, Urban heat islands and sensitive building design–A study in some French cities’ context, Sustainable Cities and Society, Vol. 19, PP. 292-299.‏
  21. Gartland, L., 2011, Ilhas de calor: como mitigar zonas de calor em áreas urbanas, Oficina de Textos.‏
  22. Goh, K. C., & Chang, C. H. (1999). The relationship between height to width ratios and the heat island intensity at 22: 00 h for Singapore. International Journal of Climatology: A Journal of the Royal Meteorological Society, 19(9), 1011-1023.
  23. Heidt, V. and Neef, M., 2008, Benefits of urban green space for improving urban climate, In Ecology, planning, and management of urban forests (pp. 84-96). Springer, New York, NY.
  24. Lau, K. K. L.; Chung, S. C. and Ren, C., 2019, Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification, Building and Environment, Vol. 154, PP. 227-238.‏
  25. Levermore, G. J. and Cheung, H. K. W., 2012, A low-order canyon model to estimate the influence of canyon shape on the maximum urban heat island effect, Building Services Engineering Research and Technology, Vol. 33, No. 4, PP. 371-385.‏
  26. Liang, Z.; Wu, S.; Wang, Y.; Wei, F.; Huang, J.; Shen, J. and Li, S., 2020, The relationship between urban form and heat island intensity along the urban development gradients, Science of The Total Environment, Vol. 708, 135011.‏
  27. Liu, L. and Zhang, Y., 2011, Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong, Remote Sensing, Vol. 3, No. 7, PP. 1535-1552.‏
  28. Mahmoudzadeh, H.; Naghdbishi, A. and Momeni, S., 2018, The Impact of Urban Use on Creation of Thermal Islands (Case Study: Mashhad City), Journal of Geography and Environmental Hazards, Vol. 7, No. 27, 105-119.
  29. Mohammed, Y., & Salman, A. (2018). Effect of urban geometry and green area on the formation of the urban heat island in Baghdad city. In MATEC web of Conferences (Vol. 162, p. 05025). EDP Sciences.
  30. Montávez, J. P.; González‐Rouco, J. F. and Valero, F., 2008, A simple model for estimating the maximum intensity of nocturnal urban heat island, International Journal of Climatology: A Journal of the Royal Meteorological Society, Vol. 28, No. 2, PP. 235-242.‏
  31. Nakata-Osaki, C. M.; Souza, L. C. L. and Rodrigues, D. S., 2015, A GIS extension model to calculate urban heat island intensity based on urban geometry.‏
  32. Nakata-Osaki, C. M.; Souza, L. C. L. and Rodrigues, D. S., 2018, THIS–Tool for Heat Island Simulation: A GIS extension model to calculate urban heat island intensity based on urban geometry, Computers, Environment and Urban Systems, Vol. 67, PP. 157-168.‏
  33. Oke, T. R. (1997). Urban environments. The surface climates of Canada, 303-327.
  34. Oke, T. R., & Cleugh, H. A. (1987). Urban heat storage derived as energy balance residuals. Boundary-Layer Meteorology, 39(3), 233-245.
  35. Oke, T. R., 1973, City size and the urban heat island, Atmospheric Environment (1967), 7, No. 8, PP. 769-779.
  36. Oke, T. R., 1981, Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations, Journal of climatology, Vol. 1, No. 3, PP. 237-254.
  37. Oke, T. R., 1982, The energetic basis of the urban heat island, Quarterly Journal of the Royal Meteorological Society, Vol. 108, No, 455, PP. 1-24.‏
  38. Rajagopalan, P., Lim, K. C., & Jamei, E. (2014). Urban heat island and wind flow characteristics of a tropical city. Solar Energy, 107, 159-170.
  39. Ramírez-Aguilar, E. A. and Souza, L. C. L., 2019, Urban form and population density: Influences on Urban Heat Island intensities in Bogotá, Colombia, Urban Climate, Vol. 29, 100497.‏
  40. Roth, M.; Oke, T. R. and Emery, W. J., 1989, Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology, International Journal of Remote Sensing, Vol. 10, No. 11, PP. 1699-1720.‏
  41. Ryu, Y. H. and Baik, J. J., 2012, Quantitative analysis of factors contributing to urban heat island intensity. Journal of Applied Meteorology and Climatology, 51(5), 842-854.
  42. Voogt, J. A. and Oke, T. R., 2003, Thermal remote sensing of urban climates, Remote sensing of environment, Vol. 86, No. 3, PP. 370-384.‏
  43. Xian, G. and Crane, M., 2006, An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data, Remote Sensing of environment, Vol. 104, No. 2, PP. 147-156.‏
  44. Xiao, R. B.; Ouyang, Z. Y.; Zheng, H.; Li, W. F.; Schienke, E. W. and Wang, X. K., 2007, Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China, Journal of Environmental Sciences, Vol. 19, No. 2, PP. 250-256.‏