Investigating the Urban Poverty with Emphasis on Social Indicators Between 2006 and 2016 )Case Study: Ardebil City(

Document Type : Research Paper

Authors

1 PhD in Geography and Urban Planning, Mohaqegh Ardabili University, Ardabil, Iran

2 Assistant Professor of Architecture, Ivan Key University, Ivan Key, Iran

Abstract

Introduction
Urban poverty is a multidimensional problem that Faces people with many limitations including limited access to employment and income, lack of adequate housing and services, unhealthy and violent environments, and lack of access to social services and health support mechanisms, and Educational. Thus, in explaining spatial inequality and urban poverty we cannot simply focus on its economic dimension: because Citizen poverty and social poverty are also other dimensions of poverty that are central to the spread all kinds of social harm and deviation. Today, the weaknesses of poverty studies and poverty-based approaches in cities are evident to almost everyone. It can be said that a realistic understanding and analysis of poverty in urban areas requires more attention to the social dimensions of this problem. Since urban poverty has been the focus of economic attention in most of the cases and few studies have addressed the social aspects affecting urban poverty, Therefore, the present study, with emphasis on the effective social aspects in this field, identifies the extent of social poverty and its pattern of spread in Ardabil during 2006 to 2016 to provide a platform for policymakers, planners, and urban managers to make decisions about reducing poverty and social deprivation problems in urban areas.

Methodoloy
The purpose of this study is practical and in terms of the nature and method of the research we use descriptive-analytical methods. Source of cited indices and quantities used, data and information of statistical blocks of general population census and housing of Ardabil city during 2006- 2016 and maps (GIS), Deputy Governor of Ardabil Planning.

The statistical population of the study is the statistical blocks of Ardabil city during the period of 2006 to 2016. The ARC/GIS software has been used to illustrate the poverty situation in this city using the Hot Spot Analysis technique of spatial autocorrelation. Moran's statistic was used to analyze the distribution patterns of urban poverty.

Results and discussion
To study the spatial inequality and determination of urban poverty in Ardebil city, we used the data of 2006 and 2016 statistical blocks and in Arc / GIS software using its capabilities, hot spot analysis are done for all the indices used in Ardabil. This analysis calculates the Gateway-RD statistic for all the effects in the data. Also, with respect to the calculated Z score, it can be shown in which blocks the data are clustered with high or low values. According to this analysis, the higher the Z score, the higher the values clustered and it make hot spots. In the case of the negative and significant Z in terms of Statistical, we can say that the smaller the Z score, the more severe the clustering of the lower values and indicating cold spots. According to the data obtained, in 2006, out of 5142 urban blocks in Ardebil, about 53% were in very deprived and deprived condition, 26% were in moderate condition and about 21% were in good condition. According to 2016 data, these percentages are 46, 23, 33, respectively, among 6439 urban blocks, which also indicates that Ardabil city blocks in terms of social indices in 2016 compared to 2006 is in a better position. At this stage, after identifying the cold and hot spots for each of the indices, the maps are combined and finally the final map for both periods 2006 and 2016, according to the Morris Index is categorized in 5 levels from the most privileged to the most deprived. After classifying Ardebil city blocks in 2006 and 2016, Arc / GIS software and spatial autocorrelation tool have been used to illustrate the pattern of distribution and distribution of this inequality.

It is used to analyze patterns of distribution and distribution of effects and phenomena in space and space and is known as the Moran statistic. In this study, the calculated Moran index for 2006 is 0.100517 and for 2016 is 0.137205. These values are smaller than one and on the other hand the value of P-value is zero. It can be concluded that the data in question have spatial autocorrelation and since the value of Moran is positive and close to one, so the spatial pattern of poverty in Ardebil In 2006 and 2016 it has been clustered and concentrated. In Ardebil's poverty and spatial inequality cluster model, the most disadvantaged and most disadvantaged clusters are located in the northern, western and western parts, and the focus of these clusters is largely influenced by urban creep and rural core integration to the body of the city. These embedded textures in the city due to the prevailing conditions of their formation, both physically and economically and socially had vulnerable and unstable textures and formed double poles at the city level.

Conclusion

A deeper scrutiny of and awareness of each community is the first step in planning for a greater and more decisive fight with poverty. Studying more deeply leads to a deeper understanding of the process, and over the course of time. It provides a compelling picture of poverty. Among these measures, the conflict between the object and the mind, or more modernly, the quantitative and qualitative attitudes toward achieving poverty eradication efforts. In recent years this struggle has shifted in favor of a qualitative attitude and emphasis on socio-cultural indicators. The spread of the phenomenon of poverty, especially in the suburbs of Ardebil, is the major problem of the city, which has increased in recent years with rural migration and the incorporation of rural textures into the city limits and the expansion of suburbanization. Given that the nature and dimensions of the power created in the Ardebil blocs are not only a necessity for an inequality, but also are a necessity based on human values, Therefore, in this study, 21 social indices were extracted from the statistical blocks of 2006 and 2016, and by applying these indices to Arc GIS environment, the poverty and inequality situation in Ardabil city was investigated.

Keywords

Main Subjects


  1. حسن‌زاده، محمد و میرزا ابراهیمی، رضا. (1386). استراتژی کاهش فقر، تجربه کشورهای شرق آسیا، تهران: موسسه تحقیقاتی تدبیر اقتصاد.
  2. ذکایی، محمد سعید و رشیدی، جمال. (1398). سازه فقر شهری: تجربه مردم‌نگارانه اتوبیوگرافیک فقر در فضاهای شهری تهران نمونه موردی: محله هرندی. برنامه‌ریزی رفاه توسعه اجتماعی، 10 (40)، 113-63.
  3. رشیدی، پیام و ناجی میدانی، علی‌اکبر. (1392). بررسی شاخص‌های فقر در مناطق شهری استان خراسان رضوی (1385-1391). فصلنامه اقتصاد و الگوسازی، 4 (15-14)، 155-133.
  4. رئیس دانا، فریبرز. (1379). نقد روش در پدیده‌شناسی فقر، مجموعه مقالات فقـر در ایـران. تهـران: انتشـارات علـوم بهزیستی و توان‌بخشی.
  5. سلیمانی مقدم، هادی؛ زندی، رحمان و اکبری، ابراهیم. (1400). پهنه‌بندی و تحلیل فضایی فقر شهری با استفاده از تحلیل‌های مکانی (موردمطالعه: شهر مشهد). تحقیقات کاربردی علوم جغرافیایی، 60 (21)، 239-258.
  6. شارع‌پور، محمود. (1392). جامعه‌شناسی شهری. تهران: انتشارات سمت.
  7. شریفی‌نیا، زهرا و مهدوی حاجیلویی، مسعود. (1390). نقش فقر اجتماعی و اقتصاد روستایی بر تخریب محیط‌زیست، مطالعه موردی: مرتع ممیزی شده شوررود بخش شیب آب شهرستان زابل. پژوهش‌های جغرافیای انسانی، 76، 84-67.
  8. شکویی، حسین. (1373). دیدگاه‌های نو در جغرافیای شهری، تهران: انتشارات سمت.
  9. عسگری، علی. (1390). تحلیل‌های آمار فضایی با ArcGis، چاپ اول، تهران: انتشارات سازمان فناوری اطلاعات و ارتباطات شهرداری تهران.
  10. عنابستانی، علی‌اکبر و علیزاده، لیدا. (1397). بررسی ارتباط بین فقر روستایی و میزان مراجعه به مراکز بهداشتی – درمانی، مطالعه موردی: شهرستان سبزوار. مجله جغرافیا و برنامه‌ریزی، 23(67)، 243- 223.
  11. قانعی راد، محمدامین. (1384). رویکرد توسعه اجتماعی به برنامه فقرزدایی در ایران. فصلنامه رفاه اجتماعی، 18، 18-1.
  12. کلانتری، صمد؛ ربانی، رسول و صداقت، کامران. (1384). ارتباط فقر با قانون‌گریزی و شکل‌گیری آسیب اجتماعی»، فصلنامه علمی پژوهشی رفاه اجتماعی، 5 (18)، 23-1.
  13. مرکز آمار ایران، سرشماری عمومی نفوس و مسکن مرکز آمار ایران (1395-1385).
  14. مهدنژاد، حافظ و غلامی، علیرضا. (1400). تحلیل جغرافیایی قطبش اجتماعی در کلان‌شهر اصفهان. فصلنامه جغرافیا (فصلنامه علمی پژوهشی و بین المللی انجمن جغرافیایی ایران)، 19، 130-115
  15. میری آشتیانی، الهام. (1390). مقدمه‌ای بر آسیب‌شناسی مسائل اجتماعی در ایران. تهران: فرهنگ.
  16. نیک پور، عامر، رضازاده، مرتضی و الهقلی تبارنشلی، فاطمه. (1397). تحلیل الگوی فضایی شاخص‌های فقر شهری در بابل. مجله جغرافیا و برنامه‌ریزی، 24(71)، 418- 391.
  17. یاراحمدی، معصومه و نیک پور، عامر. (1400). تغییرات فضایی فقر شهری در نورآباد ممسنی. چشم‌انداز مطالعات شهری و روستایی، 2(3)، 74-89.
  18. Allen, T., & Thomas, A. (Eds.). (2000). Poverty and Development into the 21st century. London: UK Oxford University Press.
  19. Alloush, M., & Bloem, J. (2022). Neighborhood violence, poverty, and psychological well-being. Journal of Development Economics, 154, 102756.
  20. Berner, E. (2000). Poverty Alleviation and the Eviction of the Poorest: towards Urban Land Reform in the Philippines. International Journal of Urban and Regional Research, 24(3), 554–566.
  21. Bourguignon, F., & Chakravarty, S. R. (2003) The measurement of multidimensional poverty. Journal of Economic Inequality, 1(1), 25–49.
  22. Curley, A. (2005). Theories of urban poverty and implications for public housing policy. J. Soc. & Soc. Welfare.
  23. Dai, X., Guo, Z., Zhang, L., & Li, D. (2010). Spatio-temporal exploratory analysis of urban surface temperature field in Shanghai, China .Stoch Environ Res Risk Assess, 24(2): 57- 247
  24. Duclos, J. Y., & Araar, A. (2006). Poverty and Equity: Measurement Policy and Estimstion with DAD. Springer, New York.
  25. FAN, Sh., & EunYoung CHO, E. (2021) Paths out of poverty: International experience«Journal of Integrative Agriculture, 20(4), 857-867
  26. Gemmer M, Becker S, Jiang T (2004) Observed monthly precipitation trends in China 1951–2002. Theor Theor Appl Climatol, 77(1):39-45.
  27. Gerber, John J., & Macionis, Linda M. (2010).  Sociology (7th Canadian ed. ed.). Toronto: Pearson Canada.
  28. Gilbert, A. (2014). Environment studies. Chapter 5:6 - Housing the Urban Poor in The companion to development studies, 257-262.
  29. Haslam, P. A., Schafer, J., & Beaudet, P. (Eds.). (2017) Introduction to international development: Approaches, actors, issues and practice, New York: Oxford University Press.
  30. Instituto, N. (2009). Poverty And Its Measurement, The Presentation Of A Range Of Methods To Obtain Measures Of Poverty.
  31. Langlois, A., & Kitchen, P. (2001). Identifying and measuring dimensions of urban deprivation in Montreal: An analysis of the 1996 census data. Urban Studies, 38(1), 119–139.
  32. Marshall J.D., McKone, T.E., Deakin, E. & Nazaroff, W.E. (2005). Inhalation of motor vehicle emissions: effects of urban population and land area. Atmospheric Environment, 39(2), 283-295.
  33. Moser, G., & Ishida, T. (2001). Economic growth and poverty reduction in Sub-Saharan Africa. Available at: https://www. imf. org/external/pubs/ft/wp/2001/wp01112. Pdf.
  34. Niu, T., Chen, Y., & Yuan, Y. (2020). Measuring urban poverty using multi-source data and a random forest algorithm: A case study in Guangzhou. Sustainable Cities and Society, 54, 1-12.
  35. Noble, M., Wright, G., Smith, G., & Dibben, C. (2006). Measuring multiple deprivation at the small-area level. Environment & Planning, 38(1), 169–185.
  36. Poku-Boansi, M., Amoako, C., Owusu-Ansah, J. K., & Brandful Cobbinah, P. (2020). The geography of urban poverty in Kumasi, Ghana. Habitat International, 103, 1-13.
  37. Ren, C. (2011). Modeling poverty dynamics in moderate-poverty neighborhoods: a multi-level approach, Doctoral dissertation, The Ohio State University.
  38. Ren, C. (2011). Modeling poverty dynamics in moderate-poverty neighborhoods: a multi-level approach. Doctoral dissertation, The Ohio State University.
  39. Rowntree, B.S. (1901) Poverty: A Study of Town Life, Macmillan, London. Seventh Annual Report of the United States Commissioner of Labor.
  40. Samat, N., & Elhadary, Y. A. E., (2012). Political economy and urban poverty in the developing countries: Lessons learned from Sudan and Malaysia. Journal of geography and Geology, 4(1). 227-235.
  41. Schouten, M.A.C., & Mathenge, R.W. (2010). Communal sanitation alternatives for slums: a case study of Kibera, Kenya. Journal of Physics and Chemistry of Earth, 35(13-14), 815-822.
  42. Sen, A. (1985). Well-being, agency and freedom: The dewey lectures 1984. Journal of Philosophy, 82(4), 169–221.
  43. Sen, A. (1983). Poor Relatively Speaking. Oxford Economic Papers, 35, 153-169.
  44. Townsand, P. (1985). A Sociological Approach to the Measurement of Poverty: a Rejoinder to Professor AmartyaSen. Oxford Economic Papers, 659-668.
  45. Townsend, P. (1987). Deprivation. Journal of Social Policy, 16(2), 125–146.
  46. UNDP and Oxford Poverty Initiative. (2019) Global multi-dimensional poverty index 2019, illuminating inequalities.
  47. United Nations Development Programme (UNDP). (2010) Human development report 2010: The real wealth of nations: Pathways to human development. New York City: Palgrave Macmillan.
  48. Vearey, J., Thomson, K., Sommers, T., & Sprague, C. (2017). Analysing local-level responses to migration and urban health in Hillbrow: the Johannesburg Migrant Health Forum. BMC public health, 17(3), 427.
  49. Wang, Z.B., & Fang, C.L., (2016). Spatial-temporal characteristics and determinants of PM 2.5 in the Bohai Rim Urban Agglomeratio. Chemosphere, 148, 62- 148.
  50. Weldearegay, S.K., Tefera, M.M., & Feleke, S.T. (2021). Impact of urban expansion to peri-urban smallholder farmers' poverty in Tigray. North Ethiopia. Heliyon, 7(6), 1-11.
  51. World Bank. (2002). Poverty Reduction and the World Bank, Progress in Operationalizing the WDR2000/2001.Washington DC,World bank.
  52. Wu, J.G., Jenerette, G.D., Buyantuyev, A., & Redman, C.L. (2011). Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecological Complexity, 8, 1, 1–8.