مدلسازی تغییرات کاربری اراضی فیروزآباد با استفاده از تصاویر ماهواره ای چند زمانه

نوع مقاله : مقاله علمی پژوهشی

نویسنده

گروه جغرافیا،، دانشگاه آزاد اسلامی، لارستان، ایران.

چکیده

کاربری اراضی یکی از مهمترین جنبه های بررسی مدیریت منابع طبیعی و بازنگری تغییرات محیطی است . با بررسی های تغییرات کاربری در سیستم اطلاعات جغرافیایی میتوان عوامل توسعه فیزیکی شهر را نیز استخراج کرد که می توان به مواردی از جمله تغییرات کاربری اراضی اشاره کرد و مورد بررسی قرار داده و پیش بینی نمود.

در این تحقیق با استفاده از قابلیت های سنجش از دور و و GIS تغییرات کاربری اراضی شهرستان فیروز آباد واقع در استان فارس در بازه زمانی بین سال های ( 2003-2013-2018) با استفاده از تصاویر ماهواره ای لندست (ETM , ETM+) مورد پایش قرارگرفته وسپس کلاس های کاربری اراضی ، تجزیه و تحلیل روش ها و تغییرات آنها در نرم افزار ENVI و EDRISI طبقه بندی شده است .تجزیه تحلیل و تغییرات زمانی دردوره 15 ساله منطقه مورد مطالعه نشان داد که سطح اراضی مسکونی افزایش داشته و بیشترین تغییرات کاربری در مناطق زمین های کشاورزی ایجاد شده است . بر مبنای این تغییرات ، پتانسیل تبدیلات کاربری وپیش بینی برای سال 2023 ، با استفاده روش زنجیره مارکوف مدلسازی گردید .در مدل LCM نقشه های پتانسیل تبدیل حاصل از اجرای شبکه های عصبی مصنوعی پرسپترون چند لایه با کاربری اراضی سال های 2013 و 2018 و متغیر های تاثیر گذار انجام شد . لازم به ذکر میباشد که با توجه به خشکسالی منطقه در سال های اخیرو عدم توجه و مدیریت مناسب در وضعیت هیدرولوژی و فقدان ثبات وضعیت اقتصادی از عوامل موثر بر تغییرات کاربری اراضی در منطقه مورد مطالعه میباشد .

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation and Modeling of Land Use Changes of Firozabad Using Multitemporal Satellate Imagery

نویسنده [English]

  • Marzieh Mogholi
Department of Geography, Islamic Azad University, Larestan, Iran.
چکیده [English]

Extended Abstract
Introduction
Today, studies and researches based on land use are carried out in order to meet the needs of the land surface with multiple uses such as agricultural land, gardens, residential areas and industrial areas, etc. Using remote sensing images as a new tool in surveying land cover and land use types, their changes over time can be checked and confirmed. In today's world and with the growth of technology, satellite observations are very important for understanding land use patterns in large areas and detecting changes over time.In recent years, the use of satellite images in determining land use and investigating the expansion of cities has been of great interest. The use of remote sensing technology with the aim of examining changes over time is an inevitable necessity. Paying attention to the adverse effects of land use change in the management of urban areas by planners using Landsat satellite image information is very useful. Therefore, due to the rapid growth of urbanization, not only a large amount of urban natural lands have changed their use, but the expansion of cities has caused socio-economic and physical use changes in the surrounding villages. Therefore, it can be claimed that the science of remote sensing is a comprehensive tool for managing natural resources and remote sensing satellites are the best and most accurate data sources for detecting, quantifying and mapping patterns of land use changes.
 
Methodology
First, satellite images of three appropriate time periods were collected from different sources. The data were checked for geometric and radiometric errors and were received at the L1T level. To prevent errors, by displaying individual bands and different color combinations on the computer screen, the data in terms of radiometric errors were investigated and the atmospheric correction was done in the software using the ENVI method.To check the geometrical situation, the georeferenced image was prepared from the USGS site, and the intersections and important points were checked in the ENVI software. Then, the prepared images were classified by image classification and band combination software such as ENVI 5 and ILWIS and based on ground control, the classification was done. Relevant corrections were applied according to the needs of the obtained images. Coding and combination of color images for different decades were carried out. The next step was to determine the number of desired classes for supervised classification and to determine land use, and then to ensure the accuracy of the classification, a scattered sample was collected from all the studied areas. The fuzzy logic method based on the theory of adaptability was used to classify the image and extract land use and land cover maps. Finally, using this model, a map of land use was prepared from the studied area, and to evaluate the changes, the area of each of the land use classes in each period was drawn in the form of a table.To figure out the changes in the studied area, the maps obtained from the classification of images were studied with the orthogonal table method, and the prepared user maps were compared two by two and created as a matrix. The simulation was done in the relevant software such as IDRISI, GIS. By comparing the land use of the first two decades with the third decade and using the Markov chain method, simulating and predicting the trend of land use changes for the coming years was considered as the forecasting horizon in this research.
 
Results and discussion
Geometrical corrections were made in ENVI software. The obtained images had no significant error and atmospheric correction was also applied. The RGB composition of the image was prepared and the desired OIF index was calculated by ELWISI software to prepare the best band composition of the images. The obtained combination was pasted together in ENVI and the desired range was classified. In addition, the images received from TM and ETM were combined using spectral bands and panchromatic bands, which have high spatial resolution, and a better image was created.
 
Conclusion
The 15-year study period with the expansion of built-up lands, shows the most destruction in the agricultural lands of the outskirts of the city and barren lands in the border and suburbs of the city and farming lands. This trend can lead to environmental damage and further reduction of agricultural lands in the region. Previous research and experiences show that the use of a GIS system in the field of implementation and management of land use changes, especially in agriculture, is inevitable. According to the result of the artificial neural network and Markov model and drought in recent years, it is necessary to note and manage the hydrology of the region. Also, due to the passage of two main roads, one from the southern industrial area (Southern Parian) and the other from the east, it is necessary to plan more precisely for the land uses and development of industrial and urban areas. The amount and type of cultivation in the plain lands of Firozabad need to be reconsidered so that foreseeable problems in the region can be solved before they occur. Undoubtedly, it is necessary to have a spatial database of the land use areas of the city under study, which comes from various sources, including satellite images, public information, and cadastral maps.
 
Funding
There is no funding support.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved the content of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
 We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • land use
  • Markov chain
  • Landsat
  • r
  • Firoozabad
آرخی صالح. (1394). ارزیابی روند بیابان‌زایی و مدل‌سازی مکانی الگوی تغییرات کاربری اراضی در منطقه بیابانی دهلران استان ایلام با استفاده از تصاویر ماهواره‌ای لندست. پایان‌نامه 22/6/1394
اکبری، محمد. (1382)، ارزیابی و طبقه‌بندی بیابان‌زایی با تکنیک RS و GIS در منطقه خشک شمال اصفهان. پایان‌نامه کارشناسی ارشد بیابان‌زدایی. دانشگاه صنعتی اصفهان. دانشکده منابع طبیعی.
رستگار، علیرضا؛ غلامی، حسینه؛ فخیره، اکبر و نوری، سهیلا. (1389). مقایسه روش‌های مختلف پایش پوشش گیاهی در منطقه بیابانی عین خوش دهلران با استفاده از RS و GIS. همایش ملی ژئوماتیک 1395. سازمان نقشه‌برداری کشور.
رسولی، علی‌اکبر؛ زرین‌بال، محمد و شفیعی، محمد. (1395). کاربرد تصاویر ماهواره‌ای با هدف تشخیص تغییرات کاربری اراضی و ارزیابی تأثیرات زیست‌محیطی، در پژوهش و سازندگی،
زائری امیرانی، آزاد و سفیانیان، علیرضا (1397). بررسی روند تغییرات پوشش اراضی و رشد جمعی در محدوده شهر اصفهان با استفاده از سنجش‌ازدور طی سال‌های (1366-1378) همایش ملی ژئوماتیک، اردیبهشت،1390، سازمان نقشه‌برداری کشور.
قربانی، رسول؛ پورمحمدی، محمدرضا و محمودزاده، حسن (1393). رویکرد زیست‌محیطی در مدل‌سازی تغییرات کاربری اراضی محدوده کلان‌شهر تبریز برای استفاده از تصاویر ماهواره‌بر برای، ارزیابی چندمعیاری و سلول‌های خودکار زنجیرة مارکوف (1363-1417). فصلنامه مطالعات شهری، 78 (8)،
 علوی پناه، سید کاظم؛ گودرزی مهر، سعید و خاکباز، باهره. (1390). فناوری سنجش از راه دور حرارتی و کاربرد آن در شناسایی پدیده‌ها. نشریه نشاء علم، 2 (1)،
لطفی، صدیقه؛ محمودزاده، حسن؛ عبدالهی، مهدی و سالک فرخی، رقیه. (1389). کاربرد تصاویر ماهواره‌ای اسپات برای تهیه نقشه کاربری اراضی شهرستان مرند با رویکرد شی گرا. مجله کاربرد سنجش‌ازدور و سیستم اطلاعات جغرافیایی در برنامه‌ریزی، 1 (2)،
محرمی، جاوید. (1393) بررسی نقش کاربری اراضی در تولید جزیره گرمایی شهری مطالعه موردی: شهر تبریز. دانشکده جغرافیا گروه آب و هواشناسی تاریخ دفاع 17/06/1393
محمدی، عباس علی (1392). پیش‌بینی تغییرات کاربری اراضی و پوشش زمین با استفاده از تصاویر ماهواره‌ای و مدل زنجیره‌ای مارکوف. پایان‌نامه 3/8/1392
نشاط، عبدالمجید. (1396). تجزیه‌وتحلیل و ارزیابی تغییرات کاربری و پوشش زمین با استفاده از داده‌های سنجش‌ازدور و سامانه‌های اطلاعات جغرافیایی در استان گلستان. پایان نامة کارشناسی ارشد رشته سنجش‌ازدور و.GIS دانشگاه تربیت مدرس.
 
References
Akbari, M., (2012). evaluation and classification of desertification with RS and GIS techniques in the arid region of northern Isfahan. Master thesis on desertification. Isfahan University of Technology. Department of natural resources.
Alavi Panah, S. K., Gudarzi Mehr. S., & Khakbaz, B. (2011). thermal remote sensing technology and its application in the identification of phenomena. Nasha Alam magazine, 2 (1).
El-Kawy,O. R., (2016). Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied Geography, 31(2), 483-494.
Arkhi, S. (2014). Evaluation of the desertification process and spatial modeling of land use changes in the desert area of Dehlran. Ilam province using Landsat satellite images,
Collins, J. B., & Woodcock, C. E. (2017). An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data. Remote Sensing of Environment, 56, 66–77.
Church, R.L., & Murray, A.T., (2009). Bussiness Site Selection, Location Analysis, and GIS. John Wiley & Sons INC.
Dikmen, I., & Birgonul, M.T. (2007). Using Analytic Network Process for Performance Measurement in Construction. College of Architecture, Georgia Institute of Technology, USA, PP. 1-11.
Ghorbani, R., Pourmohammadi, M., Mahmoodzadeh, H. (2013). Environmental approach in modeling land use changes in Tabari metropolitan area for using multiple time satellite images for multi-criteria evaluation and automatic cells.
Hathout, S. (2012). The use of GIS for monitoring and predicting urban
growth in East and West St Paul, Winnipeg, Manitoba, Canada. Journal of
Environmental Management, 66
, 229-238
Kauth, R.J. & Thomas, G.S. (2019). The tasseled cap - A graphic description of the spectral temporal development of agricultural crops as seen by Landsat. Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, Perdue University, West Lafayette, Indiana, pp. 4151.
Macleod, R.S. & Congalton, R.G. (1998) A quantitative comparison of change detection algorithms for monitoring grass from remotely sensed data. Photogrammetric and Engineering Remote Sensing, 64(3), 207-216.
Lotfi, S., Mahmoudzadeh, H., Abdulahi, M., & Salek Farkhi, R. (2010). the application of SPOT satellite images for the preparation of land use map of Marand city with an object-oriented approach. Journal of Remote Sensing and Geographical Information System in Planning, Quarterly, 1(2),
Mohammadi, A. A., Mosivand, A. J., & Shayan, S. (2013). prediction of land use and land cover changes using Satellite images and Markov chain model.
Moharrami, J. (2013). Investigating the role of land use in the production of urban heat island (case study: Tabriz city). Faculty of Geography, Department of Water and Meteorology, History of Defence.
Neshat Abdul, M. (2016). Analysis and evaluation of land use and land cover changes using remote sensing data and geographic information systems in Golestan province. Master's thesis in the field of remote sensing and GIS. Tarbiat Modares University List of non-Persian sources
Sunar, F. (1998) An analysis of changes in a multi-data set.Acase study in the Ikitelli area Istanbul Turkey. Int, J, Remot sensing, 19, 245-265.
Rasouli, A. A., Zareen Bal, M., & Shafiei, M. (2015). the use of satellite images with the aim of detecting land use changes and evaluating environmental impacts, in research and construction.
Richards John A., & Xiuping, J. (2006). Remote Sensing Digital Image -Analysis: An Introduction. 4th Edition. Springer.
Rostgar, A., Gholami, H., Fakhira, A., & Nouri, S, (2009). comparison of different methods of vegetation monitoring in Ain Khosh Dehlran desert area using RS and GIS. National Geomatics Conference 2015. Country Mapping Organization.
Yuan, D. & Elvidge, C. (2015) NALC land cover change detection pilot study: Washington D.C area experiments. Remote Sensing of Environment, 66,166-178.
Zairi Amirani, A., &Sufianian, A. (2017). Investigating the trend of land cover changes and collective growth in Isfahan city limits using remote sensing during the years (1366-1378) of the National Geomatics Conference, May 1390, Country Mapping Organization.