تحلیل فضایی خوشه‌های آسیب‌پذیر بافت کالبدی شهر گرگان در برابر زلزله (با استفاده از آمار فضایی )

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشیار جغرافیا و برنامه ‏ریزی شهری دانشگاه اصفهان

2 دانشجوی دکتری جغرافیا و برنامه‏ ریزی شهری، دانشگاه اصفهان

چکیده

زلزله یکی از خطرناک‏ترین، مخرب‏ترین، و غیرقابل پیش‏بینی‏ترین مخاطرات طبیعی شهری به‏شمار می‏آید. طبق اعلام سازمان مدیریت بحران کشور، 78درصداز مساحت کشور در محدودة خطر لرزه‏خیزی بالا قرار دارد و 10درصداز تلفات انسانی ناشی از بلایا در نتیجة زلزله است. استان گلستان جزو استان‏های رده دوم خطر زلزله و در ردة خود اولین استان پُرخطر است. بر همین اساس، هدف از پژوهش حاضر سنجش و تحلیل مکانی خوشه‏های آسیب‏پذیر بافت کالبدی شهر گرگان در شرایط بحرانی به‏منظور تعیین نقاط نیازمند مداخلة فوری است. پژوهش حاضر از نوع کاربردی و روش بررسی آن توصیفی-تحلیلی است. جامعه آماری شامل مرزهای جغرافیایی شهر گرگان براساس سرشماری سال 1395 است. برای تعیین پهنه‏های آسیب‏پذیر از مدل‏هایی نظیر ANP و VIKOR استفاده شده است. برای تحلیل فضایی خوشه‏های آسیب‏پذیر بافت کالبدی نیز از آمارة فضایی Getis-Ord بهره گرفته شده است. یافته‏های پژوهش نشان‏دهندة آن است که شاخص مصالح ساختمانی با وزن 452/0 و شاخص ریزدانگی (مساحت قطعات) با وزن 126/0‏ به ترتیب بیشترین و کمترین تأثیرگذاری را در ارزیابی آسیب‏پذیری بلوک‏های شهر گرگان دارند. همچنین، بیشترین میزان آسیب‏پذیری از لحاظ کالبدی مربوط به مناطق مرکزی و جنوبی و حاشیه‏های شرقی و تا حدودی غربی شهر گرگان است. تحلیل Hotspot به طور واضح شکاف بین مرکز و جنوب را با سایر مناطق شهر گرگان نشان می‏دهد. درواقع، پهنه‏های آسیب‏پذیر شهر گرگان عمدتاً بر بافت‏های تاریخی و مناطق حاشیه‏نشین منطبق است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial Analysis of Vulnerability Clusters in Physical Texture of Gorgan city against Earthquake (Using Spatial Statistics)

نویسندگان [English]

  • Ali Zangiabadi 1
  • Abdorreza Dadbood 2
1 Associate Professor, Faculty of Geography and Planning, University of Isfahan,
2 Ph.D. student of Geography and Urban Planning
چکیده [English]

Spatial Analysis of Vulnerability Clusters in Physical Texture of Gorgan city against Earthquake Using Spatial Statistics

Extended abstract
Introduction
Earthquake is one of the most natural hazards dangerous, destructive and unpredictable of the city. According to the country's Crisis Management Organization, 78% of the country's surface is in high seismic risk area and 10% of human-caused mortality is due to earthquake disasters. Golestan province, except the second-ranking provinces, is the earthquake hazard and in its category the first high-risk area. In general, four main theories are related to the vulnerability of cities. First, the human ecology theory that has emphasized the unbreakable bonding of biophysical processes and social processes. Second, the theory of political economy, which have integrated macro and micro perspectives and provides a better analytical framework for complexity and dependence comprehensive understanding of vulnerability-causing factors. Third, the theory of community-oriented compatibility, this theory is based on Identification, assistance and the implementation of community-based activities that have strengthen the capacity of local people to adapt to life in a risky and unpredictable situation. Fourth, Resilience which is the capacity or ability of the community to predict, prepare, respond and quickly against the effects and consequences of disaster. According to the country's Crisis Management Organization, 78% of the country's area has placed in high-risk seismic zone and 10% of the human losses resulting from the disaster is as a result of the earthquake. Golestan province is among the second-ranking provinces of the earthquake hazard and in its category is province first of high risk. The results of the surveys show that 840 earthquakes have been registered in Golestan and many areas of the province are susceptible to landslide. Seismic zoning maps has show that Golestan province has four zones, regardless of the effect of alluvial deposits. These zones have included of areas with very high, high, medium and low of seismic hazard. Gorgan has located in very very high and high areas. Accordingly, the aim of present research is measurement and spatial analysis of vulnerability clusters in physical texture of Gorgan city in critical conditions in order to points determination of immediate intervention.
Seismic zoning maps for seismic rock placement, based on the background of the accelerated movement of the earth's powerful movement for the return period of 475 and 2475 years, show that regardless of the effect of alluvial deposits, Golestan province has four zones, areas with high, high, medium and The city of Gorgan is low in many areas.

Materials and methods
The current research is applied and its method is descriptive-analytical. Determinants criteria of physical texture vulnerability degree in Gorgan were investigated in five criteria including of number of floors, fineness, age of buildings and materials. After evaluating the criteria and converting them to comparable and standard scales, has been used from Analytic Network Analysis (ANP) for relative weight determination of each criterion. Prioritization of the indicators was done according to expert opinions and evaluation of the indicators. Finally, blocks have been classified with the VIKOR model in terms of vulnerability and was produced the physical vulnerability map of building units at the urban blocks level of Gorgan city. Then, was carried out vulnerable spatial clusters analysis of Gorgan city through the Getis-Ord model.
Results and discussion
The results of the study show that the highest and the least effective factors in the vulnerability assessment of the Gorgan city blocks were related respectively to the index of building materials with weight (0/425), and the index of pettyness with a weight (0/126). Based on the results of the VIKOR model, the highest degree of physical vulnerability is related to the central and somewhat southern parts of Gorgan. Also, the eastern and western regions and somewhat north of the city have a better status in this index. The Hotspot analysis shows clearly the gap between the center, the south and the margins of the eastern and western regions with other parts of the city of Gorgan. As a result, the central and southern regions and the margins of the eastern and western regions of Gorgan are in an inappropriate situation in terms of vulnerability during the earthquake. At the same time, the northern, western and eastern parts of the city have less damage during the earthquake due to the physical characteristics of the building
Conclusion
Researches such as Ródenas et al(2018), Rusydi et al (2017), Ianoș et al (2017), Kushe et al(2017), Mehraban Motlagh and Motamedi (2018) and Paivastehgar et al (2017) has focused on the zoning of vulnerable sites in cities such as Palu, Bucharest, Karonga, Shiraz and Imamzadeh Hasan Tehran. However, the present study has also focused on spatial analysis of the vulnerable zones of Gorgan and the determination of clusters. At the same time, this research has not neglected to focus on vulnerability zoning. The comparative analysis of vulnerability in Gorgan indicate that the central region has less residential units than the peripheral region of Gorgan. Buildings in the central part are more ancient. The periphery buildings have a higher elevation than the center. Also, peripheral buildings are better in terms of access to passages and are wider than the central part of the city of Gorgan. In general, the buildings of peripheral parts are less vulnerable than the central part of the Gorgan city. In this regard, the following suggestions have been made: The establishment of crisis management centers and emergency services in the west and east of the city, preventing congestion, especially in hazardous areas, opening roads and giving incentives to worn-out buildings regeneration by the government and the municipality.
By comparative analysis of vulnerability in Gorgan, it can be concluded that the central area has less residential units than the periphery of the city of Gorgan. Buildings in the central part of the old age are more. The periphery buildings have a higher elevation than the center. Also, peripheral building buildings are better off in terms of access to passages

Keywords: Vulnerability, Vulnerable clusters, Earthquake, Physical texture, Gorgan city.

کلیدواژه‌ها [English]

  • "Vulnerability"
  • "Vulnerable clusters"
  • "Earthquake"
  • "Physical texture"
  • "Gorgan city"
ایمانی، بهرام؛ کانونی، رضا؛ بی‏نیاز، محمد و عالی‏محمدی، احمد، 1395، راهبردهای کاهش آسیب‏پذیری بافت‏های فرسوده در برابر زلزله، مطالعة موردی: محلۀ امامزاده حسن تهران، فصل‏نامه باغ نظر، دورة 13، ش 39، صص ۶۷-82.
بزی، خدارحم؛ صادقی، نوشین؛ خواجه شاهکویی، علیرضا و رضایی، حامد، 1396، تحلیل و برآورد آسیب‏پذیری مساکن شهری در برابر زلزله (مطالعۀ موردی: شهر گرگان)، مجلة آمایش جغرافیایی فضا، دورة 7، ش 25، صص ۷۳-88.
پیوسته‏گر، یعقوب؛ محمدی‏‏دوست، سلیمان؛ حیدری، علی‏اکبر و مشکسار، پریسا، 1396، ارزیابی و سنجش آسیب‏پذیری بافت فرسودة شهری کلان‏شهر شیراز در برابر زلزله با بهره‏گیری از AHP. فصل‏نامه جغرافیا (برنامه‏ریزی منطقه‏ای)، دورة 8، ش 1، صص ۳۳-56.
زنگی‏آبادی، علی؛ قائد رحمتی، صفر و سلطانی، لیلی، 1391، برنامه‏ریزی مدیریت بحران زلزله در شهرها، مشهد: شریعه توس.
صیامی، قدیر؛ لطیفی، غلامرضا؛ تقی‏نژاد، کاظم و زاهدی کلاکی، ابراهیم، 1392، آسیب‏پذیری پدافندی ساختار شهری با استفاده از تحلیل سلسله‏مراتبی AHP و GIS، مطالعة موردی: شهر گرگان، مجلة  آمایش جغرافیایی فضا(فصل‏نامه علمی- پژوهشی دانشگاه گلستان)، دورة 3، ش 10، صص ۲۱-42.
قدیری، محمود، 1394، عوامل اجتماعی- اقتصادی مؤثر بر میزان آسیب‏پذیری بافت مسکونی شهر تهران در برابر زلزله، فصل‏نامه فضای جغرافیایی، دورة 15، ش 51، صص ۲۴۱-262.
مهدنژاد، حافظ، 1394، سنجش و تحلیل مکانی گستره‏های فقر شهری (مورد مطالعه: شهر ورامین)، پایان‏نامه برای دریافت مدرک دکتری، رشتۀ جغرافیا و برنامه‏ریزی شهری، دانشکدۀ جغرافیا، دانشگاه تهران، تهران.
مهدویان، عباس، 1392، پهنه‏بندی لرزه‏ای استان گلستان. نشریۀ علوم زمین، ش 89، صص ۱۶۵-174.
مهربان مطلق، هادی و معتمدی، محمد، 1397، تحلیل میزان آسیب‏پذیری بافت‏های فیزیکی- کالبدی شهر بجنورد در مقابل مخاطرات طبیعی (با تأکید بر زلزله)، فصل‏نامه دانش انتظامی خراسان شمالی، دورة 5، ش 17، صص ۶۷-82.
10. Armas, I.; Toma-Danila, D.; Ionescu, R. and Gavris, A., 2017, Vulnerability to Earthquake Hazard: Bucharest Case Study, Romania. Int J Disaster Risk Sci, No. 8, PP. 182-195.
11. Berquist, M.; Daniere, A. and Drummond, L., 2014, Planning for global environmental change in Bangkok's informal settlements. Journal of environmental planning and management, Vol. 58, No. 10, PP. 1711-1730.
12. Ghadiri, M., 2015, Socio- economic Factors in Residential Vulnerability to Earthquake in Tehran City, Journal of Geographic Space, Volume 15, Issue 51, pp. 241-262.
13. Gharakhlou, M., 2009, Crisis risk in urban slum. CAG, ETAVA, PP. 25-31.
14. Ianoș, I.; Merciu, G.L.; Merciu, C. and Pomeroy, G., 2017, Mapping Accessibility in the Historic Urban Center of Bucharest for Earthquake Hazard Response. Natural Hazards Earth System Science, No. 13, PP. 1-24.
15. Imani, B.; Kanoni, R.; Biniaz, M. and Ali Mohammadi, A., 2016, Strategies to reduce the vulnerability of worn tissues to earthquakes (case study: Imamzadeh Hassan neighborhood of Tehran), Bagh-e Nazar Journal, Volume 13, Issue 39, pp. 67- 82.
16. Jain, G., 2015, The role of private sector for reducing disaster risk in large scale infrastructure and real estate development: Case of Delhi. Environment & Urbanization, Vol. 23, No. 2, PP. 238-255.
17. khodarahm, b.; Sadeghi, N.; Khajeh Shahkouei, A. and Rezaei, H., 1396, An Analysis of Vulnerability Indicators of Urban Settlements Against Earthquake (Case Study: Gorgan City), Geographical Planning of Space Quarterly Journal, Volume 7, Issue 25, pp. 73-88.
18. Kushe, J.; Manda, M.; Mdala, H. and Wanda, E., 2017, The earthquake/seismic risk, vulnerability and capacity profile for Karonga town. African Journal of Environmental Science and Technology, Vol. 11, No. 1, PP. 19-32.
19. Mahdavian, A., 2013, Seismic zonation of Golestan province. Journal of GeoScience, Vol. 23(89), pp. 165-174.
20. Mahdnezhad, H., 2015, Assessment and Spatial Analysis of Urban Poverty Areas (Case Study: Varamin), Thesis for PhD, Geography and Urban Planning, Faculty of Geography, University of Tehran, Tehran.
21. Malladi, V. P. T., 2012, Earthquake Building Vulnerability and Damage Assessment with Reference to Sikkim Earthquake 2011. Master of Science in Geo-information Science and Earth Observation, Faculty of Geo-information Science and Earth Observation, Twente: University of Twente.
22. Mayunga, J. S., 2008, Understanding and Applying the Concept of Community Disaster Resilience: A capital-based approach. Paper prepared for the summer academy for social vulnerability and resilience building, 22 -28 July 2007, Munich, Germany.
23. Mehraban Motlagh, H. and Motamedi, M., 1397, Analyzing the Level of Vulnerability of Bojnourd City’s Spatio-Physical Texture against the Natural Hazards (with special reference on earthquake), Quarterly Journal of North Khorasan Police Science, Volume 5, Issue 17, pp. 67-82.
24. Peyvastehgar, Y., Mohammadidoost, S.; Heydari, A. A. and Meshksar, P., 2017, Assessing the vulnerability of urban distressed areas of the metropolis Shiraz against earthquakes using Analytical Hierarchy Process (AHP), Quarterly of Geography (Regional Planning), Volume 8, Issue 1, pp. 33-56.
25. Pickett, S. T. A.; Burch, W. R.; Jr. Dalton, S. D. and Foresman, T. W., 1997, Integrated urban ecosystem research. Urban Ecosystems, No. 1, PP. 183-184.
26. Prüfung, T. D. M., 2014, Exploring Social Vulnerability to Natural Disasters in Urban Settlements- Perspectives Flooding in the Slums of Lagos. Lagos: Universität zu Köln.
27. Ródenas, J. L.; García-Ayllón, S. and Tomás, A., 2018, Estimation of the Buildings Seismic Vulnerability: A Methodological Proposal for Planning Ante-Earthquake Scenarios in Urban Areas. Applied Sciences, Vol. 1208, No. 8, PP. 2-17.
28. Ruiter, M. C.; Ward, P. J.; Daniell, J. E. and Aerts, J. C. J. H., 2017, A comparison of flood and earthquake vulnerability assessment indicators. Natural Hazards Earth System Science, No. 17, PP. 1231-1251.
29. Rusydi, H. and Rahmawati, R. E., 2017, Vulnerability zoning of earthquake disaster of Palu. International Journal of Science and Applied Science: Conference Series, Vol. 1, No. 2, PP. 137-143.
30. Siami, Gh.; Latifi, Gh.; Taghinezhad, K. and Zahedi Kalaki, E., 2013, Pathology of Defensive Urban Structure using Analytical Hierarchy Process AHP and GIS. Case Study: Gorgan, Geographical Planning of Space Quarterly Journal, Volume 3, Issue 10, pp. 21-42.
31. Schütte, S., 2004, Urban Vulnerability in Afghanistan: Case Studies from Three Cities. Kabul: Afghanistan Research and Evaluation Unit.
32. Thinda, T. K. A., 2009, Community-Based Hazard and Vulnerability Assessment: A case study in Lusaka Informal Settlement, City of Tshwane, Degree of Masters in Disaster Risk Management. University of the Free State, Faculty of Natural and Agricultural Science Centre for Disaster Risk Management Education and Training for Africa.
33. Tromeur, E.; Menard, R.l Bailly, J. B. and Soulie, C., 2012, Urban vulnerability and resilience within the context of climate change. Hazards Earth Syst, No. 12, PP. 1811-1821.
34. World Bank (WB)., 2010, Natural hazards, unnatural disasters: the economics of effective prevention. Washington: The International Bank for Reconstruction and Development.
35. Zangiabadi, A.; Ghaed Rahmati, S. and Soltani, L., 2012, Planning for Earthquake Crisis Management in Cities, Mashhad: Sharia Toos.