تحلیل اکتشافی داده‌های فضایی ازدواج در نواحی روستایی ایران

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 دانشیار دانشکدة جغرافیا، قطب جغرافیا و برنامه‌ریزی روستایی

2 دانشجوی دکتری جغرافیا و برنامه‌ریزی شهری، دانشگاه تربیت مدرس

3 دانشجوی دکتری جغرافیا و برنامه‌ریزی روستایی، دانشگاه شهید بهشتی

چکیده

ازدواج، یکی از وقایع حیاتی در هر جامعه محسوب می­شود که اثری مستقیم بر ساخت، ترکیب و تحول­های جمعیتی آن سرزمین دارد. شناخت الگوهای فضایی ازدواج، به برنامه­ریزی فضایی و پایش تحول­های آتی سرزمین کمک می­کند. سؤال محوری پژوهش این است که الگوهای فضایی ازدواج در ایران چیست و از چه روندهایی تبعیت می­کند. برای انجام پژوهش از روش اکتشافی داده­های مکانی استفاده شده است. تحلیل اکتشافی داده­های فضایی، بسط تحلیل داده­های اکتشافی بر داده­های فضایی است. اهداف ESDA بیشتر توصیفی است تا اثباتی و به دنبال کشف و شناسایی الگوهای فضایی است. برای شناخت الگوها و روندهای فضایی با کمک آمار فضایی، میانگین متحرک فضایی و روندهای فضایی محاسبه و تبدیل به نقشه شده است. میانگین متحرک فضایی، برگرفته از سری­های زمانی است و به کمک ماتریس وزن جغرافیایی محاسبه می­شود. یافته­های پژوهش، نابرابری­های فضایی در الگوی ازدواج را در نواحی روستایی کشور نشان می­دهد. روندهای فضایی، از سلسله­مراتب فضایی تأثیر می­پذیرند. در نمونه­های با رتبة کوچک k=6 روندهای عمومی وجود ندارد و با افزایش مقدار k (تعداد همسایه­های هر واحد فضایی)، الگوی روندهای فضایی تغییر می­کنند؛ بدین­ترتیب که ابتدا روندهای محلی پیدا می­شوند و سپس به روندهای عمومی تبدیل می­شوند. بررسی نقشه­های جغرافیایی جمعیت دارای همسر نواحی روستایی ایران نشان می­دهد که این الگوها تصادفی نیستند؛ بلکه از نظم و الگوی فضایی خاصی تبعیت می­کنند. نقشه­های الگوهای فضایی جمعیت دارای همسر در سطح استان نشان می­دهد که بخش­های مرکزی و شمالی کشور، بالاترین نسبت جمعیت ده­ساله و بیشتر دارای همسر را به خود اختصاص می­دهند، اما در بخش جنوبی کشور، این نسبت پایین است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Exploratory Analysis of Spatial Data of Marriage in Rural Areas of Iran

نویسندگان [English]

  • Hasan Ali Faraji Sabokbar 1
  • Mansour Rezaali 2
  • Mohammad Sadeqhi 3
  • Mehrangiz Rezaei 3
1 Associate professor of geography and rural planning, Faculty of Geography, University of Tehran, Tehran, Iran
2 PhD candidate in geography and urban planning, University of Tarbiat Modarres, Tehran, Iran
3 PhD candidate in geography and rural planning, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Introduction
Marriage is considered as one of the demographic events that make a direct impact on structure, composition, dynamics, and evolution of population in each country. Pattern and changes in marital status is subject of some disciplines. In Iran, the structure and composition of marriage in space and time is not constant. In the studies of marriage, two indicators are important: persistent and age of marriage especially early marriage. These indicators were increased from 1986 and then declined to 1996. Study about this indicator is important for exploring specifications of population in Iran. Marital status in Iran has spatial variations. Exploring the patterns and spatial behavior of population is mostly important to dynamism of the population and family planning in rural areas of Iran. In this research, we used an exploration of the spatial data analysis. Several theories have been proposed for marital status and the most important is modernization theory. Modernization theory is a description and explanation of the processes of transformation from traditional or underdeveloped societies into modern ones. This process affects marriage patterns. Theories of modernization or development have existed for centuries, according to the evidence from social scientists to explain the causes and effects of social change. These theories, often substituted geographically varying data for historically varying data, attempted to be causally related to various aspects of life, from religion and family to education, labor, and family. Some have suggested that the modernization of families, i.e., older ages at marriage, greater use of contraceptives, smaller numbers of children, causes societies become more modern, e.g., wealthier, more educated. Another theory is based on economic principles. Marriage has many different causes, including a number of children, income inequality, and natural selection of genetic traits over time, allocating time and other resources for families.
Methodology
 Exploratory Spatial Data Analysis (ESDA) extends exploratory data analysis to spatial data. The aims of ESDA are descriptive, rather than confirmatory and seek to detect patterns in spatial data to formulate hypotheses are based on or about the geography of the data and to assess the statistical models for spatial data. The techniques that are employed in ESDA are both visual and resistant. Resistant techniques are those where the results are not greatly affected by a small number of unusual or aberrant values. Visual techniques are those employing charts, graphs, figures and in the case of ESDA, crucially, maps. ESDA includes EDA in the sense that spatial data, which comprise attribute values with associated location identifiers, at one level can be explored without reference to where data values occur on a map. As a final quality of ESDA techniques, they usually stay close to the original data in the sense of either working with the original data or only employing simple intuitive transformations of the data. The data model for ESDA draws on the data model for EDA:
DATA = SMOOTH +ROUGH
The terms ``smooth'' and ``rough'' can refer to just the set of attribute values of the dataset. Geographic weight matric: Each nonnegative matrix GW=(:i,j=1,..,n), is a possible spatial weight matrix summarizing spatial relations between n spatial units. Here each spatial weight,  typically reflects the “spatial influence” of unit j on unit i. Following the standard convention, we here exclude “self-influence” by assuming that =0 for all i=1,…,n (so that W has a zero diagonal). We used KNN method to calculate GW:
 
 
Compute spatial moving average: It is useful to distinguish between the two classes of ESDA statistics, i.e., global or whole map statistics, which process all the cases for one (or more) attributes. Focused or local statistics which process subsets of the data one at a time and which may involve a sweep through the data look for evidence of smooth and rough elements of the mapped data. This study considers local statistics. The spatial moving average is local statistic that uses GW-matrix.
 
Data: data on marriage is recorded in Population and Housing Census. We use marriage data 2006. 
Procedure of research:
1- Making base map: in order to model  the spatial trends; we used a regular hexagonal grid as basic units. And each cell was given a unique value as identifying code. 
 2- Aggregate data: rural data aggregate based on hexagonal units. Firstly, it was with spatial join tool in ArcGIS hexagon map and rural map overlaid. Then, key field summarizes rural data, output is attribute data. Attribute data are joined to hexagonal map.
3- Calculate GW-Matrix: with KNN calculation method, GW-matrix data.
4- Calculate Spatial Moving Average: SMA is calculated in MATLAB application. 
5- Cartography  
6- Data analysis
 
Results and discussion
The results of this research show a typical spatial trend in marital pattern in rural areas. In central parts of Iran marriage indicator is more than peripheral areas. But hexagonal map illustrates details of this trend. Spatial trend has two patterns; a global trend from southwest to center and east southern to center and local trend in more other places in Iran. While with increase in k in KNN, local pattern is dissolved together and make a global trend. To explore the spatial trend, we used the spatial moving average. Space is hierarchal and the calculation of SMA is conducted with different orders (6, 15, 30, 45, and 60). Survey maps are related to the spatial patterns. This shows that in each level we have a specific local pattern that may be different from other levels. Map 6 shows the spatial trend with k = 6. It can be seen in the map that no spatial trend can be found. There are several local spatial trends. With increase in k-order, the spatial patterns are varying. Increase in the value of k spatial patterns can be changed and local spots are formed. When the order of K is less than 45, the local trends formed and in K greater than 45 a global trend is found on the map.
Conclusion
Geographical Survey map of Iran with his in rural areas shows that these patterns are not random but follow a certain order or spatial alignment. The maps show spatial patterns of crowds with his wife at the provincial level. The maps also indicate spatial patterns of crowds with his wife at the provincial level that central and northern parts of the country have the highest proportion of married in ten years and more, but in the southern part of the country, the ratio is low.

کلیدواژه‌ها [English]

  • ESDA
  • geography of marriage
  • marriage status
  • spatial statistics
  • spatial trend

عباسی شوازی، محمدجلال. و رسول صادقی، 1384، قومیت و الگوهای ازدواج در ایران، پژوهش زنان، سال سوم، شمارة 1، صص 25- 47.

علی مندگاری، ملیحه. پویایی وضعیت زناشویی در ایران با تأکید بر مضیقة ازدواج طی سرشماری 45 - 1385.

مهاجرانی، علی اصغر، 1389، تحول وضع زناشویی و تغییر الگوی سنی ازدواج در ایران، فصلنامة تخصصی علوم اجتماعی دانشگاه آزاد واحد شوشتر، صص 41- 54.

محمودیان، حسین ، 1383، سن ازدواج در حال افزایش: بررسی عوامل پشتیبان، نامة علوم اجتماعی، شمارة 24، صص 27- 53.

قاسمی اردهایی، علی، 1386، تأثیر محل زندگی (روستا/ شهر) بر زمان ازدواج زنان در ایران، فصلنامة روستا و توسعه، سال دهم، شمارة 2، صص 64- 86.

کمال. محمد و همکاران، 1378، روند تغییرات سن اولین ازدواج زنان ایرانی براساس اطلاعات طرح ملی سلامت و بیماری در ایران، فصلنامة پایش، سال ششم، شمارة 2، صص 89- 97.

احمدی، وکیل و رضا همتی، 1387، بررسی وضعیت مضیقة ازدواج در ایران، مطالعات راهبردی زنان، شمارة 41، صص 43- 64.

احمدی موحد، محمد، 1387، ﺷﺎخص­های ازدواج و ﻃﻼق و ﺑﺮرسی ﺗﻐﻴﻴﺮات آن در ﻛﺸﻮر ﺑﺎ ﺗﺄﻛﻴﺪ ﺑﺮ آمارهای استانی طی سال­های 1381- 1386، فصلنامة جمعیت، شماره­های 63 و 64، صص 1- 26.

 

Abbasi Shavazi, M. and Sadeghi, R., 2005, Ethnicity and Marriage Patterns in Iran, Women in Development, Vol. 3, No. 1, pp. 25-47. (In Persian)

 

Abbasi Shavazi, M. J. and Jones G. W., 2001, Socio-Economic and Demographic Setting of Muslim Populations, Working Papers in Demography, No. 86, Canberra.(In Persian)

Ahmadi Movahed, M., 2008, Marriage and Divorce Indicators and Assess Changes in the Country with an Emphasis on Provincial Statistics During  2007 Vol. 63 & 64, pp. 1-26. (In Persian)        

Ahmadi, V., Rahamti, R., 2008, A Study of Marriage Limitations in Iran, Women's Strategic studies, No. 41, pp. 43-64. (In Persian).

Azam, K., et al, 2007, Iranian Women's Age at First Marriage Trends Based on Data From a National Study of Health and Disease, Payesh, Vol. 6, 2, pp. 89-97. (In Persian)

Becker, G. S., 1973, A Theory of Marriage: Part I, Journal of Political Economy, Vol. 81, No. 4, pp. 813-846.

Ben-Porath, Y, 1980, The F. Connection Families, Friends and Firms and the Organization of Exchange, Population and Development Review.

Cleveland, W. S., 1985, The Elements of Graphing Data, Wadsworth Publ Co.

Cleveland, W. S., 1993, Visualizing Data, Hobart Press.

Cooke, R. U., 1992, Common Ground, Shared Inheritance: Research Imperatives for Environmental Geography, Transactions of the Institute of British Geographers, Vol. 17, No. 2, pp. 131-151.

Ekert-Jaffe, O. and Solaz, A., 2001, Unemployment, Marriage and Cohabitation in France, The Journal of Socio-Economics, Vol. 30, No. 1, pp. 75-98.

Fan, C. C. and Huang, Y., 1998, Waves of Rural Brides: Female Marriage Migration in China, Annals of the Association of American Geographers, Vol. 88, No. 2, pp. 227-251.

Ghassemi Ardehaee, A., 2007, Effect of Residence (Rural/ Urban), The Time of Marriage in Iran, Rural and Development, Vol. 10, No. 2, pp. 64-86. (In Persian)

Haining, R., Wise, S., et al, 2000, Providing Scientific Visualization for Spatial Data Analysis: Criteria and an Assessment of SAGE, Journal of Geographical Systems, Vol. 2, No. 2, pp 121-140.

Li, S., Feldman, M. W., et al, 2003, Marriage Form and Family Division in Three Villages in Rural China, Population Studies, Vol. 57, No. 1, pp. 95-108.

Lloyd, C. D., 2007, Local Models for Spatial Analysis, Boca Raton, CRC/Taylor & Francis.

Lundh, C., 2013, The Geography of Marriage, Scandinavian Journal of History, Vol. 38, No. 3, pp. 318-343.

Mandgary, A. d., 2007, The Dynamics of Marital Status in Iran marriage squeezeon the census 45-85 "(In Persian)

Mahmoudian, H., 2005, The Age of Marriage is Rising: Supporting Factors, Journal of Social Sciences Letter, No. 24, pp. 27-53.(In Persian)

Mohajerani, A. A., 2010, Change in Marital Status and the Age Pattern of Marriage in Iran, Social Science, pp. 41-54. (In Persian)

Rothman, K. J., 2012, Modern epidemiology, Lippincott Williams & Wilkins

Wise, S., Haining, R., et al, 1997, Regionalization Tools for the Exploratory Spatial Analysis of Health Data, Recent Developments in Spatial Analysis, M. Fischer and A. Getis, Springer Berlin Heidelberg, pp. 83-100.

Yabiku, S. T., 2006, Land Use and Marriage Timing in Nepal, Population and Environment Vol. 27, No. 5 & 6, pp. 445-461.

Yaffee, R. A. and McGee, M., 2000, Introduction to Time Series Analysis and Forecasting: With Applications of SAS and SPSS, Academic Press Inc.